Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Preprints
https://doi.org/10.5194/amt-2020-378
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-2020-378
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  28 Sep 2020

28 Sep 2020

Review status
This preprint is currently under review for the journal AMT.

Intercomparison of Arctic ground-based XH2O observations from COCCON, TCCON and NDACC, and application of COCCON XH2O for IASI and TROPOMI validation

Qiansi Tu1, Frank Hase1, Thomas Blumenstock1, Matthias Schneider1, Andreas Schneider2, Rigel Kivi3, Pauli Heikkinen3, Benjamin Ertl1,4, Christopher Diekmann1, Farahnaz Khosrawi1, Michael Sommer5, Tobias Borsdorff2, and Uwe Raffalski6 Qiansi Tu et al.
  • 1Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK-ASF), Karlsruhe, Germany
  • 2SRON Netherlands Institute for Space Research, Utrecht, the Netherlands
  • 3Finnish Meteorological Institute, Sodankylä, Finland
  • 4Karlsruhe Institute of Technology, SCC, Karlsruhe, Germany
  • 5GRUAN Lead Centre, Deutscher Wetterdienst, Lindenberg, Germany
  • 6Swedish Institute of Space Physics, Kiruna, Sweden

Abstract. In this paper, we compare column-averaged dry-air mole fractions of water vapor (XH2O) retrievals from COCCON (COllaborative Carbon Column Observing Network) with retrievals from two co-located high-resolution FTIR (Fourier transform infrared) spectrometers as references at two boreal sites, Kiruna, Swedenand Sodankylä, Finland. In the framework of the NDACC (Network for the Detection of Atmospheric Composition Change) an FTIR spectrometer is operated in Kiruna. The H2O product derived from these observations has been generated with the MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) processor. In Sodankylä, a TCCON (Total Carbon Column Observing Network) spectrometer is operated, and the official XH2O data as provided by TCCON are used for this study. The datasets are in good overall agreement, with COCCON data showing a wet bias of (49.20 ± 58.61) ppm ((3.33 ± 3.37) %, R2 = 0.9992) compared to MUSICA NDACC and (56.32 ± 45.63) ppm ((3.44 ± 1.77) %, R2 = 0.9997) compared to TCCON.

Furthermore, the a priori H2O VMR (volume mixing ratio) profiles (MAP) used as a priori in the TCCON retrievals (also adopted for COCCON retrievals) are evaluated with respect to radiosonde (Vaisala RS41) profiles at Sodankylä. The MAP and radiosonde profiles show similar shapes and good correlation of integrated XH2O, indicating that MAP is a reasonable approximation for the true atmospheric state and an appropriate choice for the scaling retrieval methods as applied by COCCON and TCCON. COCCON shows a reduced dry bias (−1.66 %) in comparison to TCCON (−5.63 %) with respect to radiosonde XH2O and this small bias indicates that besides XCO2 and XCH4 COCCON is also able to serve as validation tool for space-borne XH2O measurements.

Finally, we investigate the quality of satellite data at high latitudes. For this purpose, the COCCON XH2O is compared with retrievals from the Infrared Atmospheric Sounding Interferometer (IASI) generated with the MUSICA processor (MUSICA IASI) and with retrievals from the TROPOspheric Monitoring Instrument (TROPOMI). Both paired datasets show generally good agreement and similar correlations at the two sites. COCCON measures 4.64 % less XH2O at Kiruna and 3.36 % at Sodankylä with respect to MUSICA IASI, while COCCON measures 9.71 % more XH2O at Kiruna and 7.75 % at Sodankylä compared with TROPOMI.

Our study supports the assumption that COCCON also delivers a well-characterized XH2O data product. This emphasizes the approach of supplementing the TCCON network for satellite validation efforts. This is the first published study where COCCON XH2O is compared with MUSICA NDACC and TCCON retrievals, and for MUSICA IASI and TROPOMI validation.

Qiansi Tu et al.

Interactive discussion

Status: open (until 25 Nov 2020)
Status: open (until 25 Nov 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Qiansi Tu et al.

Qiansi Tu et al.

Viewed

Total article views: 148 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
117 28 3 148 4 3
  • HTML: 117
  • PDF: 28
  • XML: 3
  • Total: 148
  • BibTeX: 4
  • EndNote: 3
Views and downloads (calculated since 28 Sep 2020)
Cumulative views and downloads (calculated since 28 Sep 2020)

Viewed (geographical distribution)

Total article views: 127 (including HTML, PDF, and XML) Thereof 125 with geography defined and 2 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 28 Oct 2020
Publications Copernicus
Download
Short summary
We compare column-averaged dry-air mole fractions of water vapor (XH2O) retrievals from COCCON (COllaborative Carbon Column Observing Network) with two co-located ground-based spectrometers as references at two boreal sites. Our study supports the assumption that COCCON also delivers a well-characterized XH2O data product. This is the first published study for applying COCCON for MUSICA IASI and TROPOMI validation.
We compare column-averaged dry-air mole fractions of water vapor (XH2O) retrievals from COCCON...
Citation