Preprints
https://doi.org/10.5194/amt-2024-28
https://doi.org/10.5194/amt-2024-28
08 Apr 2024
 | 08 Apr 2024
Status: a revised version of this preprint was accepted for the journal AMT and is expected to appear here in due course.

An advanced spatial co-registration of cloud properties for the atmospheric Sentinel missions: Application to TROPOMI

Athina Argyrouli, Diego Loyola, Fabian Romahn, Ronny Lutz, Víctor Molina García, Pascal Hedelt, Klaus-Peter Heue, and Richard Siddans

Abstract. The retrieval of cloud parameters from the atmospheric Sentinel missions require Earth reflectance measurements from a set of spectral bands. Frequently, the ground pixel footprints of the involved spectral bands are not fully aligned and therefore, special treatment is required within the operational algorithms. This so-called inter-band spatial mis-registration of passive spectrometers is present when the Earth reflectance measurements in different spectral bands are captured by different spectrometers. The cloud retrieval algorithm requires reflectance measurements in the UV (ultraviolet)/VIS (visible) band, where the first cloud parameter (i.e., radiometric cloud fraction) is retrieved from the OCRA (Optical Cloud Recognition Algorithm) algorithm. In addition, Earth reflectances in the NIR (near-infrared) band are needed for the retrieval of two additional cloud parameters (i.e., cloud height and cloud albedo or cloud-top height and optical thickness) from the ROCINN (Retrieval of Cloud Information using Neural Networks) algorithm. In the former TROPOMI (TROPOspheric Monitoring Instrument)/S5P (Sentinel-5 Precursor) retrieval, a co-registration scheme of the derived cloud parameters from the source band to the target band based on pre-calculated mapping weights from UV/VIS to NIR, and vice versa, is applied. In this paper we present a new scheme for the co-registration of the TROPOMI cloud parameters using collocated VIIRS (Visible Infrared Imaging Radiometer Suite)/SNPP (Suomi National Polar-orbiting Partnership) information. A great benefit of the new co-registration scheme based on the VIIRS data is that it improves the overall quality of the TROPOMI cloud products and, in addition, it allows the re-construction of the cloud parameters on the first UV/VIS detector pixel, which was impossible with the former scheme based on the static mapping tables. The latter practically means that a significant number of valid data points are added to the TROPOMI cloud, total ozone, SO2 and HCHO product since November 26th 2023 (orbit 31705), when the UPAS version 2.6 with the new co-registration scheme was activated operationally. From a comparison analysis between the two techniques, we found that the largest differences mainly appear for inhomogeneous scenes. From a validation exercise of TROPOMI against VIIRS in the across-track flight direction, we found that the old co-registration scheme tends to smooth out cloud structures along the scanline, whereas such structures can be maintained with the new scheme. The need to implement a similar inter-band spatial co-registration scheme is foreseen for the Sentinel-4/MTG-S (Meteosat Third Generation - Sounder) and Sentinel-5/MetOp-SG (Meteorological Operational Satellite - Second Generation) missions. In the case of Sentinel-4 instrument, the external cloud information will originate from collocated FCI (Flexible Combined Imager) data, on board the MTG-I (Meteosat Third Generation - Imager) satellite.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Athina Argyrouli, Diego Loyola, Fabian Romahn, Ronny Lutz, Víctor Molina García, Pascal Hedelt, Klaus-Peter Heue, and Richard Siddans

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Athina Argyrouli, Diego Loyola, Fabian Romahn, Ronny Lutz, Víctor Molina García, Pascal Hedelt, Klaus-Peter Heue, and Richard Siddans
Athina Argyrouli, Diego Loyola, Fabian Romahn, Ronny Lutz, Víctor Molina García, Pascal Hedelt, Klaus-Peter Heue, and Richard Siddans

Viewed

Total article views: 508 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
407 64 37 508 22 22
  • HTML: 407
  • PDF: 64
  • XML: 37
  • Total: 508
  • BibTeX: 22
  • EndNote: 22
Views and downloads (calculated since 08 Apr 2024)
Cumulative views and downloads (calculated since 08 Apr 2024)

Viewed (geographical distribution)

Total article views: 490 (including HTML, PDF, and XML) Thereof 490 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 08 Sep 2024
Download
Short summary
This manuscript describes a new treatment of the spatial mis-registration of cloud properties for Sentinel-5 Precursor, when the footprints of different spectral bands are not perfectly aligned. The methodology exploits synergies between spectrometers and imagers, like TROPOMI and VIIRS. The largest improvements have been identified for heterogeneous scenes at cloud edges. This approach is generic and can also be applied to future Sentinel-4 and Sentinel-5 instruments.