Articles | Volume 10, issue 4
https://doi.org/10.5194/amt-10-1609-2017
https://doi.org/10.5194/amt-10-1609-2017
Research article
 | 
26 Apr 2017
Research article |  | 26 Apr 2017

Comparison of aerosol lidar retrieval methods for boundary layer height detection using ceilometer aerosol backscatter data

Vanessa Caicedo, Bernhard Rappenglück, Barry Lefer, Gary Morris, Daniel Toledo, and Ruben Delgado

Abstract. Three algorithms for estimating the boundary layer heights are assessed: an aerosol gradient method, a cluster analysis method, and a Haar wavelet method. Over 40 daytime clear-sky radiosonde profiles are used to compare aerosol backscatter boundary layer heights retrieved by a Vaisala CL31 ceilometer. Overall good agreement between radiosonde- and aerosol-derived boundary layer heights was found for all methods. The cluster method was found to be particularly sensitive to noise in ceilometer signals and lofted aerosol layers (48.8 % of comparisons), while the gradient method showed limitations in low-aerosol-backscatter conditions. The Haar wavelet method was demonstrated to be the most robust, only showing limitations in 22.5 % of all observations. Occasional differences between thermodynamically and aerosol-derived boundary layer heights were observed.

Download
Short summary
Three methods for estimating the boundary layer height using aerosol backscatter measurements are evaluated here. Radiosonde profiles are used to evaluate aerosol-backscatter-derived boundary layer heights. Overall good agreement between radiosonde and all aerosol-derived boundary layer heights was found, and specific limitations to each method are discussed. A recommended method is given for future aerosol backscatter retrieval of the boundary layer height.