Articles | Volume 10, issue 8
https://doi.org/10.5194/amt-10-3021-2017
https://doi.org/10.5194/amt-10-3021-2017
Research article
 | 
23 Aug 2017
Research article |  | 23 Aug 2017

Evaluation of turbulence measurement techniques from a single Doppler lidar

Timothy A. Bonin, Aditya Choukulkar, W. Alan Brewer, Scott P. Sandberg, Ann M. Weickmann, Yelena L. Pichugina, Robert M. Banta, Steven P. Oncley, and Daniel E. Wolfe

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Timothy Bonin on behalf of the Authors (09 Jun 2017)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (18 Jun 2017) by Ulla Wandinger
RR by Anonymous Referee #1 (30 Jun 2017)
RR by Anonymous Referee #2 (19 Jul 2017)
ED: Publish as is (20 Jul 2017) by Ulla Wandinger
AR by Timothy Bonin on behalf of the Authors (20 Jul 2017)
Download
Short summary
Three different techniques for measuring turbulent quantities from a single Doppler lidar are evaluated against in situ observations for verification. A six-beam method generally produced the most accurate measurements of the turbulence quantities evaluated. Generally, turbulence kinetic energy can be accurately measured across all scales from a Doppler lidar. Individual velocity variances are measured less accurately, and velocity covariances are shown to be difficult to measure.