Articles | Volume 10, issue 12
Research article
29 Nov 2017
Research article |  | 29 Nov 2017

Novel approaches to estimating the turbulent kinetic energy dissipation rate from low- and moderate-resolution velocity fluctuation time series

Marta Wacławczyk, Yong-Feng Ma, Jacek M. Kopeć, and Szymon P. Malinowski

Abstract. In this paper we propose two approaches to estimating the turbulent kinetic energy (TKE) dissipation rate, based on the zero-crossing method by Sreenivasan et al. (1983). The original formulation requires a fine resolution of the measured signal, down to the smallest dissipative scales. However, due to finite sampling frequency, as well as measurement errors, velocity time series obtained from airborne experiments are characterized by the presence of effective spectral cutoffs. In contrast to the original formulation the new approaches are suitable for use with signals originating from airborne experiments. The suitability of the new approaches is tested using measurement data obtained during the Physics of Stratocumulus Top (POST) airborne research campaign as well as synthetic turbulence data. They appear useful and complementary to existing methods. We show the number-of-crossings-based approaches respond differently to errors due to finite sampling and finite averaging than the classical power spectral method. Hence, their application for the case of short signals and small sampling frequencies is particularly interesting, as it can increase the robustness of turbulent kinetic energy dissipation rate retrieval.

Short summary
We propose two novel methods to estimate turbulent kinetic energy dissipation rate applicable to airborne measurements. In this way we increase robustness of the dissipation rate retrieval and extend its applicability to a wider range of data sets. The new approaches relate the predicted form of the dissipation spectrum to the mean of zero crossings of the measured velocity fluctuations. The methods are easy to implement numerically, and estimates remain unaffected by certain measurement errors.