Articles | Volume 10, issue 12
https://doi.org/10.5194/amt-10-4573-2017
https://doi.org/10.5194/amt-10-4573-2017
Research article
 | 
29 Nov 2017
Research article |  | 29 Nov 2017

Novel approaches to estimating the turbulent kinetic energy dissipation rate from low- and moderate-resolution velocity fluctuation time series

Marta Wacławczyk, Yong-Feng Ma, Jacek M. Kopeć, and Szymon P. Malinowski

Related authors

Investigation of non-equilibrium turbulence decay in the atmospheric boundary layer using Doppler lidar measurements
Maciej Karasewicz, Marta Wacławczyk, Pablo Ortiz-Amezcua, Łucja Janicka, Patryk Poczta, and Iwona Sylwia Stachlewska
EGUsphere, https://doi.org/10.5194/egusphere-2024-1209,https://doi.org/10.5194/egusphere-2024-1209, 2024
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) Part II: First measurements of the emissivity of water in the far-infrared
Laura Warwick, Jonathan Murray, and Helen Brindley
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-21,https://doi.org/10.5194/amt-2024-21, 2024
Revised manuscript accepted for AMT
Short summary
Hailstorm events in the Central Andes of Peru: insights from historical data and radar microphysics
Jairo M. Valdivia, José Luis Flores-Rojas, Josep J. Prado, David Guizado, Elver Villalobos-Puma, Stephany Callañaupa, and Yamina Silva-Vidal
Atmos. Meas. Tech., 17, 2295–2316, https://doi.org/10.5194/amt-17-2295-2024,https://doi.org/10.5194/amt-17-2295-2024, 2024
Short summary
Hybrid instrument network optimization for air quality monitoring
Nishant Ajnoti, Hemant Gehlot, and Sachchida Nand Tripathi
Atmos. Meas. Tech., 17, 1651–1664, https://doi.org/10.5194/amt-17-1651-2024,https://doi.org/10.5194/amt-17-1651-2024, 2024
Short summary
Objective identification of pressure wave events from networks of 1 Hz, high-precision sensors
Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins
Atmos. Meas. Tech., 17, 113–134, https://doi.org/10.5194/amt-17-113-2024,https://doi.org/10.5194/amt-17-113-2024, 2024
Short summary
Number and size-controlled rainfall regimes in the Netherlands: physical reality or statistical mirage?
Marc Schleiss
EGUsphere, https://doi.org/10.5194/egusphere-2023-2807,https://doi.org/10.5194/egusphere-2023-2807, 2023
Short summary

Cited articles

Albertson, J. D., Parlange, M. B., Kiely, G., and Eichinger, W. E.: The average dissipation rate of turbulent kinetic energy in the neutral and unstable atmospheric surface layer, J. Geophys. Res.-Atmos., 102, 13423–13432, 1997.
Bershadskii, A.: Distributed chaos and inertial ranges in turbulence, eprint, arXiv:1609.01617, 2006.
Bouniol, D., Illingworth, A., and Hogan, R.: Deriving turbulent kinetic energy dissipation rate within clouds using ground based radar, in: Proceedings of ERAD, Vol. 281, 2004.
Butterworth S.: On the theory of filter amplifiers, Experimental Wireless and the Wireless Engineer, 7, 536–541, 1930.
Chamecki, M. and Dias, N. L.: The local isotropy hypothesis and the turbulent kinetic energy dissipation rate in the atmospheric surface layer, Q. J. Roy. Meteor. Soc., 130, 2733–2752, 2004.
Download
Short summary
We propose two novel methods to estimate turbulent kinetic energy dissipation rate applicable to airborne measurements. In this way we increase robustness of the dissipation rate retrieval and extend its applicability to a wider range of data sets. The new approaches relate the predicted form of the dissipation spectrum to the mean of zero crossings of the measured velocity fluctuations. The methods are easy to implement numerically, and estimates remain unaffected by certain measurement errors.