Articles | Volume 10, issue 2
https://doi.org/10.5194/amt-10-681-2017
https://doi.org/10.5194/amt-10-681-2017
Research article
 | 
03 Mar 2017
Research article |  | 03 Mar 2017

Technical note: On the intercalibration of HIRS channel 12 brightness temperatures following the transition from HIRS 2 to HIRS 3/4 for ice saturation studies

Klaus Gierens and Kostas Eleftheratos

Abstract. In the present study we explore the capability of the intercalibrated HIRS brightness temperature data at channel 12 (the HIRS water vapour channel; T12) to reproduce ice supersaturation in the upper troposphere during the period 1979–2014. Focus is given on the transition from the HIRS 2 to the HIRS 3 instrument in the year 1999, which involved a shift of the central wavelength in channel 12 from 6.7 to 6.5 µm. It is shown that this shift produced a discontinuity in the time series of low T12 values ( < 235 K) and associated cases of high upper-tropospheric humidity with respect to ice (UTHi  > 70 %) in the year 1999 which prevented us from maintaining a continuous, long-term time series of ice saturation throughout the whole record (1979–2014). We show that additional corrections are required to the low T12 values in order to bring HIRS 3 levels down to HIRS 2 levels. The new corrections are based on the cumulative distribution functions of T12 from NOAA 14 and 15 satellites (that is, when the transition from HIRS 2 to HIRS 3 occurred). By applying these corrections to the low T12 values we show that the discontinuity in the time series caused by the transition of HIRS 2 to HIRS 3 is not apparent anymore when it comes to calculating extreme UTHi cases. We come up with a new time series for values found at the low tail of the T12 distribution, which can be further exploited for analyses of ice saturation and supersaturation cases. The validity of the new method with respect to typical intercalibration methods such as regression-based methods is presented and discussed.

Download
Short summary
For studies of trends in ice supersaturation in the upper troposphere we need very long time series of upper tropospheric humidity. The set of HIRS channel 12 satellite data can be used for this purpose, since Shi and Bates (2011) had provided an intercalibrated time series of channel 12 brightness temperatures. In the current paper we improve the intercalibration at the low tail of brightness temperatures, which leads to a more homogeneous time series of upper-tropospheric humidities.