Articles | Volume 10, issue 2
Atmos. Meas. Tech., 10, 681–693, 2017
https://doi.org/10.5194/amt-10-681-2017
Atmos. Meas. Tech., 10, 681–693, 2017
https://doi.org/10.5194/amt-10-681-2017
Research article
03 Mar 2017
Research article | 03 Mar 2017

Technical note: On the intercalibration of HIRS channel 12 brightness temperatures following the transition from HIRS 2 to HIRS 3/4 for ice saturation studies

Klaus Gierens and Kostas Eleftheratos

Related authors

The effect of ice supersaturation and thin cirrus on lapse rates in the upper troposphere
Klaus Gierens, Lena Wilhelm, Sina Hofer, and Susanne Rohs
Atmos. Chem. Phys., 22, 7699–7712, https://doi.org/10.5194/acp-22-7699-2022,https://doi.org/10.5194/acp-22-7699-2022, 2022
Short summary
On the interpretation of upper-tropospheric humidity based on a second-order retrieval from infrared radiances
Klaus Gierens and Kostas Eleftheratos
Atmos. Chem. Phys., 19, 3733–3746, https://doi.org/10.5194/acp-19-3733-2019,https://doi.org/10.5194/acp-19-3733-2019, 2019
Short summary
Intercalibration between HIRS/2 and HIRS/3 channel 12 based on physical considerations
Klaus Gierens, Kostas Eleftheratos, and Robert Sausen
Atmos. Meas. Tech., 11, 939–948, https://doi.org/10.5194/amt-11-939-2018,https://doi.org/10.5194/amt-11-939-2018, 2018
Short summary
Upper tropospheric humidity changes under constant relative humidity
Klaus Gierens and Kostas Eleftheratos
Atmos. Chem. Phys., 16, 4159–4169, https://doi.org/10.5194/acp-16-4159-2016,https://doi.org/10.5194/acp-16-4159-2016, 2016
Short summary
Technical Note: 30 years of HIRS data of upper tropospheric humidity
K. Gierens, K. Eleftheratos, and L. Shi
Atmos. Chem. Phys., 14, 7533–7541, https://doi.org/10.5194/acp-14-7533-2014,https://doi.org/10.5194/acp-14-7533-2014, 2014

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Synergetic use of IASI profile and TROPOMI total-column level 2 methane retrieval products
Matthias Schneider, Benjamin Ertl, Qiansi Tu, Christopher J. Diekmann, Farahnaz Khosrawi, Amelie N. Röhling, Frank Hase, Darko Dubravica, Omaira E. García, Eliezer Sepúlveda, Tobias Borsdorff, Jochen Landgraf, Alba Lorente, André Butz, Huilin Chen, Rigel Kivi, Thomas Laemmel, Michel Ramonet, Cyril Crevoisier, Jérome Pernin, Martin Steinbacher, Frank Meinhardt, Kimberly Strong, Debra Wunch, Thorsten Warneke, Coleen Roehl, Paul O. Wennberg, Isamu Morino, Laura T. Iraci, Kei Shiomi, Nicholas M. Deutscher, David W. T. Griffith, Voltaire A. Velazco, and David F. Pollard
Atmos. Meas. Tech., 15, 4339–4371, https://doi.org/10.5194/amt-15-4339-2022,https://doi.org/10.5194/amt-15-4339-2022, 2022
Short summary
Comment on “Synergetic use of IASI profile and TROPOMI total-column level 2 methane retrieval products” by Schneider et al. (2022)
Simone Ceccherini
Atmos. Meas. Tech., 15, 4407–4410, https://doi.org/10.5194/amt-15-4407-2022,https://doi.org/10.5194/amt-15-4407-2022, 2022
Short summary
An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observations
Kang Sun, Mahdi Yousefi, Christopher Chan Miller, Kelly Chance, Gonzalo González Abad, Iouli E. Gordon, Xiong Liu, Ewan O'Sullivan, Christopher E. Sioris, and Steven C. Wofsy
Atmos. Meas. Tech., 15, 3721–3745, https://doi.org/10.5194/amt-15-3721-2022,https://doi.org/10.5194/amt-15-3721-2022, 2022
Short summary
Ozone Monitoring Instrument (OMI) collection 4: establishing a 17-year-long series of detrended level-1b data
Quintus Kleipool, Nico Rozemeijer, Mirna van Hoek, Jonatan Leloux, Erwin Loots, Antje Ludewig, Emiel van der Plas, Daley Adrichem, Raoul Harel, Simon Spronk, Mark ter Linden, Glen Jaross, David Haffner, Pepijn Veefkind, and Pieternel F. Levelt
Atmos. Meas. Tech., 15, 3527–3553, https://doi.org/10.5194/amt-15-3527-2022,https://doi.org/10.5194/amt-15-3527-2022, 2022
Short summary
Impact of 3D cloud structures on the atmospheric trace gas products from UV–Vis sounders – Part 3: Bias estimate using synthetic and observational data
Arve Kylling, Claudia Emde, Huan Yu, Michel van Roozendael, Kerstin Stebel, Ben Veihelmann, and Bernhard Mayer
Atmos. Meas. Tech., 15, 3481–3495, https://doi.org/10.5194/amt-15-3481-2022,https://doi.org/10.5194/amt-15-3481-2022, 2022
Short summary

Cited articles

Bates, J. and Jackson, D.: Trends in upper-tropospheric humidity, Geophys. Res. Lett., 28, 1695–1698, 2001.
Buehler, S., Kuvatov, M., John, V., Milz, M., Soden, B., Jackson, D., and Notholt, J.: An upper tropospheric humidity data set from operational satellite microwave data, J. Geophys. Res., 113, D14110, https://doi.org/10.1029/2007JD009314, 2008.
Cantrell, C. A.: Technical Note: Review of methods for linear least-squares fitting of data and application to atmospheric chemistry problems, Atmos. Chem. Phys., 8, 5477–5487, https://doi.org/10.5194/acp-8-5477-2008, 2008.
Chung, E.-S., Soden, B., Sohn, B., and Shi, L.: Upper-tropospheric moistening in response to anthropogenic warming, P. Natl. Acad. Sci. USA, 111, 11636–11641, 2014.
Chung, E.-S., Soden, B., Huang, X., Shi, L., and John, V.: An assessment of the consistency between satellite measurements of upper tropospheric water vapor, J. Geophys. Res., 121, 2874–2887, https://doi.org/10.1002/2015JD024496, 2016.
Download
Short summary
For studies of trends in ice supersaturation in the upper troposphere we need very long time series of upper tropospheric humidity. The set of HIRS channel 12 satellite data can be used for this purpose, since Shi and Bates (2011) had provided an intercalibrated time series of channel 12 brightness temperatures. In the current paper we improve the intercalibration at the low tail of brightness temperatures, which leads to a more homogeneous time series of upper-tropospheric humidities.