Articles | Volume 10, issue 2
Atmos. Meas. Tech., 10, 681–693, 2017
https://doi.org/10.5194/amt-10-681-2017
Atmos. Meas. Tech., 10, 681–693, 2017
https://doi.org/10.5194/amt-10-681-2017

Research article 03 Mar 2017

Research article | 03 Mar 2017

Technical note: On the intercalibration of HIRS channel 12 brightness temperatures following the transition from HIRS 2 to HIRS 3/4 for ice saturation studies

Klaus Gierens and Kostas Eleftheratos

Related authors

On the interpretation of upper-tropospheric humidity based on a second-order retrieval from infrared radiances
Klaus Gierens and Kostas Eleftheratos
Atmos. Chem. Phys., 19, 3733–3746, https://doi.org/10.5194/acp-19-3733-2019,https://doi.org/10.5194/acp-19-3733-2019, 2019
Short summary
Intercalibration between HIRS/2 and HIRS/3 channel 12 based on physical considerations
Klaus Gierens, Kostas Eleftheratos, and Robert Sausen
Atmos. Meas. Tech., 11, 939–948, https://doi.org/10.5194/amt-11-939-2018,https://doi.org/10.5194/amt-11-939-2018, 2018
Short summary
Upper tropospheric humidity changes under constant relative humidity
Klaus Gierens and Kostas Eleftheratos
Atmos. Chem. Phys., 16, 4159–4169, https://doi.org/10.5194/acp-16-4159-2016,https://doi.org/10.5194/acp-16-4159-2016, 2016
Short summary
Technical Note: 30 years of HIRS data of upper tropospheric humidity
K. Gierens, K. Eleftheratos, and L. Shi
Atmos. Chem. Phys., 14, 7533–7541, https://doi.org/10.5194/acp-14-7533-2014,https://doi.org/10.5194/acp-14-7533-2014, 2014
A climatology of formation conditions for aerodynamic contrails
K. Gierens and F. Dilger
Atmos. Chem. Phys., 13, 10847–10857, https://doi.org/10.5194/acp-13-10847-2013,https://doi.org/10.5194/acp-13-10847-2013, 2013

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Remote sensing of methane plumes: instrument tradeoff analysis for detecting and quantifying local sources at global scale
Siraput Jongaramrungruang, Georgios Matheou, Andrew K. Thorpe, Zhao-Cheng Zeng, and Christian Frankenberg
Atmos. Meas. Tech., 14, 7999–8017, https://doi.org/10.5194/amt-14-7999-2021,https://doi.org/10.5194/amt-14-7999-2021, 2021
Short summary
The ESA MIPAS/Envisat level2-v8 dataset: 10 years of measurements retrieved with ORM v8.22
Bianca Maria Dinelli, Piera Raspollini, Marco Gai, Luca Sgheri, Marco Ridolfi, Simone Ceccherini, Flavio Barbara, Nicola Zoppetti, Elisa Castelli, Enzo Papandrea, Paolo Pettinari, Angelika Dehn, Anu Dudhia, Michael Kiefer, Alessandro Piro, Jean-Marie Flaud, Manuel López-Puertas, David Moore, John Remedios, and Massimo Bianchini
Atmos. Meas. Tech., 14, 7975–7998, https://doi.org/10.5194/amt-14-7975-2021,https://doi.org/10.5194/amt-14-7975-2021, 2021
Short summary
Phosgene distribution derived from MIPAS ESA v8 data: intercomparisons and trends
Paolo Pettinari, Flavio Barbara, Simone Ceccherini, Bianca Maria Dinelli, Marco Gai, Piera Raspollini, Luca Sgheri, Massimo Valeri, Gerald Wetzel, Nicola Zoppetti, and Marco Ridolfi
Atmos. Meas. Tech., 14, 7959–7974, https://doi.org/10.5194/amt-14-7959-2021,https://doi.org/10.5194/amt-14-7959-2021, 2021
Short summary
Glyoxal tropospheric column retrievals from TROPOMI – multi-satellite intercomparison and ground-based validation
Christophe Lerot, François Hendrick, Michel Van Roozendael, Leonardo M. A. Alvarado, Andreas Richter, Isabelle De Smedt, Nicolas Theys, Jonas Vlietinck, Huan Yu, Jeroen Van Gent, Trissevgeni Stavrakou, Jean-François Müller, Pieter Valks, Diego Loyola, Hitoshi Irie, Vinod Kumar, Thomas Wagner, Stefan F. Schreier, Vinayak Sinha, Ting Wang, Pucai Wang, and Christian Retscher
Atmos. Meas. Tech., 14, 7775–7807, https://doi.org/10.5194/amt-14-7775-2021,https://doi.org/10.5194/amt-14-7775-2021, 2021
Short summary
Retrieval algorithm for OClO from TROPOMI (TROPOspheric Monitoring Instrument) by differential optical absorption spectroscopy
Jānis Puķīte, Christian Borger, Steffen Dörner, Myojeong Gu, Udo Frieß, Andreas Carlos Meier, Carl-Fredrik Enell, Uwe Raffalski, Andreas Richter, and Thomas Wagner
Atmos. Meas. Tech., 14, 7595–7625, https://doi.org/10.5194/amt-14-7595-2021,https://doi.org/10.5194/amt-14-7595-2021, 2021
Short summary

Cited articles

Bates, J. and Jackson, D.: Trends in upper-tropospheric humidity, Geophys. Res. Lett., 28, 1695–1698, 2001.
Buehler, S., Kuvatov, M., John, V., Milz, M., Soden, B., Jackson, D., and Notholt, J.: An upper tropospheric humidity data set from operational satellite microwave data, J. Geophys. Res., 113, D14110, https://doi.org/10.1029/2007JD009314, 2008.
Cantrell, C. A.: Technical Note: Review of methods for linear least-squares fitting of data and application to atmospheric chemistry problems, Atmos. Chem. Phys., 8, 5477–5487, https://doi.org/10.5194/acp-8-5477-2008, 2008.
Chung, E.-S., Soden, B., Sohn, B., and Shi, L.: Upper-tropospheric moistening in response to anthropogenic warming, P. Natl. Acad. Sci. USA, 111, 11636–11641, 2014.
Chung, E.-S., Soden, B., Huang, X., Shi, L., and John, V.: An assessment of the consistency between satellite measurements of upper tropospheric water vapor, J. Geophys. Res., 121, 2874–2887, https://doi.org/10.1002/2015JD024496, 2016.
Download
Short summary
For studies of trends in ice supersaturation in the upper troposphere we need very long time series of upper tropospheric humidity. The set of HIRS channel 12 satellite data can be used for this purpose, since Shi and Bates (2011) had provided an intercalibrated time series of channel 12 brightness temperatures. In the current paper we improve the intercalibration at the low tail of brightness temperatures, which leads to a more homogeneous time series of upper-tropospheric humidities.