Articles | Volume 11, issue 1
https://doi.org/10.5194/amt-11-127-2018
https://doi.org/10.5194/amt-11-127-2018
Research article
 | 
10 Jan 2018
Research article |  | 10 Jan 2018

Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar

Jianping Mao, Anand Ramanathan, James B. Abshire, Stephan R. Kawa, Haris Riris, Graham R. Allan, Michael Rodriguez, William E. Hasselbrack, Xiaoli Sun, Kenji Numata, Jeff Chen, Yonghoon Choi, and Mei Ying Melissa Yang

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Wenzel on behalf of the Authors (06 Oct 2017)  Author's response
ED: Referee Nomination & Report Request started (06 Oct 2017) by Gerhard Ehret
RR by Anonymous Referee #1 (18 Oct 2017)
RR by Anonymous Referee #2 (27 Oct 2017)
ED: Publish as is (06 Nov 2017) by Gerhard Ehret
Download
Short summary
Precise global measurement of CO2 in the Earth’s atmosphere is needed to understand carbon–climate feedbacks. Ideally we would measure from space 24/7 over all land and sea surfaces, in all-sky conditions, clouds, haze or dust and achieve near 100 % usable data. NASA-GSFC has developed a laser instrument to measure CO2 from an aircraft flying at over 40 000 feet as a satellite precursor. Here we demonstrate this measurement capability, highlighting data in the presence of a variety of clouds.