Articles | Volume 11, issue 1
https://doi.org/10.5194/amt-11-127-2018
https://doi.org/10.5194/amt-11-127-2018
Research article
 | 
10 Jan 2018
Research article |  | 10 Jan 2018

Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar

Jianping Mao, Anand Ramanathan, James B. Abshire, Stephan R. Kawa, Haris Riris, Graham R. Allan, Michael Rodriguez, William E. Hasselbrack, Xiaoli Sun, Kenji Numata, Jeff Chen, Yonghoon Choi, and Mei Ying Melissa Yang

Related authors

Seasonal Variation of Total Column Formaldehyde, Nitrogen Dioxide, and Ozone Over Various Pandora Spectrometer Sites with a Comparison of OMI and Diurnally Varying DSCOVR-EPIC Satellite Data
Jay Herman and Jianping Mao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1216,https://doi.org/10.5194/egusphere-2024-1216, 2024
Short summary
Airborne lidar measurements of atmospheric CO2 column concentrations to cloud tops made during the 2017 ASCENDS/ABoVE campaign
Jianping Mao, James B. Abshire, S. Randy Kawa, Xiaoli Sun, and Haris Riris
Atmos. Meas. Tech., 17, 1061–1074, https://doi.org/10.5194/amt-17-1061-2024,https://doi.org/10.5194/amt-17-1061-2024, 2024
Short summary
Attenuated atmospheric backscatter profiles measured by the CO2 Sounder lidar in the 2017 ASCENDS/ABoVE airborne campaign
Xiaoli Sun, Paul T. Kolbeck, James B. Abshire, Stephan R. Kawa, and Jianping Mao
Earth Syst. Sci. Data, 14, 3821–3833, https://doi.org/10.5194/essd-14-3821-2022,https://doi.org/10.5194/essd-14-3821-2022, 2022
Short summary
Retrieval algorithm for the column CO2 mixing ratio from pulsed multi-wavelength lidar measurements
Xiaoli Sun, James B. Abshire, Anand Ramanathan, Stephan R. Kawa, and Jianping Mao
Atmos. Meas. Tech., 14, 3909–3922, https://doi.org/10.5194/amt-14-3909-2021,https://doi.org/10.5194/amt-14-3909-2021, 2021
Short summary
Potential improvements in global carbon flux estimates from a network of laser heterodyne radiometer measurements of column carbon dioxide
Paul I. Palmer, Emily L. Wilson, Geronimo L. Villanueva, Giuliano Liuzzi, Liang Feng, Anthony J. DiGregorio, Jianping Mao, Lesley Ott, and Bryan Duncan
Atmos. Meas. Tech., 12, 2579–2594, https://doi.org/10.5194/amt-12-2579-2019,https://doi.org/10.5194/amt-12-2579-2019, 2019
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
The differences between remote sensing and in situ air pollutant measurements over the Canadian oil sands
Xiaoyi Zhao, Vitali Fioletov, Debora Griffin, Chris McLinden, Ralf Staebler, Cristian Mihele, Kevin Strawbridge, Jonathan Davies, Ihab Abboud, Sum Chi Lee, Alexander Cede, Martin Tiefengraber, and Robert Swap
Atmos. Meas. Tech., 17, 6889–6912, https://doi.org/10.5194/amt-17-6889-2024,https://doi.org/10.5194/amt-17-6889-2024, 2024
Short summary
NitroNet – a machine learning model for the prediction of tropospheric NO2 profiles from TROPOMI observations
Leon Kuhn, Steffen Beirle, Sergey Osipov, Andrea Pozzer, and Thomas Wagner
Atmos. Meas. Tech., 17, 6485–6516, https://doi.org/10.5194/amt-17-6485-2024,https://doi.org/10.5194/amt-17-6485-2024, 2024
Short summary
Improved convective cloud differential (CCD) tropospheric ozone from S5P-TROPOMI satellite data using local cloud fields
Swathi Maratt Satheesan, Kai-Uwe Eichmann, John P. Burrows, Mark Weber, Ryan Stauffer, Anne M. Thompson, and Debra Kollonige
Atmos. Meas. Tech., 17, 6459–6484, https://doi.org/10.5194/amt-17-6459-2024,https://doi.org/10.5194/amt-17-6459-2024, 2024
Short summary
Atmospheric propane (C3H8) column retrievals from ground-based FTIR observations in Xianghe, China
Minqiang Zhou, Pucai Wang, Bart Dils, Bavo Langerock, Geoff Toon, Christian Hermans, Weidong Nan, Qun Cheng, and Martine De Mazière
Atmos. Meas. Tech., 17, 6385–6396, https://doi.org/10.5194/amt-17-6385-2024,https://doi.org/10.5194/amt-17-6385-2024, 2024
Short summary
Can the remote sensing of combustion phase improve estimates of landscape fire smoke emission rate and composition?
Farrer Owsley-Brown, Martin J. Wooster, Mark J. Grosvenor, and Yanan Liu
Atmos. Meas. Tech., 17, 6247–6264, https://doi.org/10.5194/amt-17-6247-2024,https://doi.org/10.5194/amt-17-6247-2024, 2024
Short summary

Cited articles

Aben, I., Hasekamp, O., and Hartmann, W.: Uncertainties in the space-based measurements Of CO2 columns due to scattering in the Earth's atmosphere, J. Quant. Spectrosc. Ra., 104, 450–459, 2007. 
Abshire, J. B., Riris, H., Allan, G. R., Weaver, C. J., Mao, J., Sun, X., Hasselbrack, W. E., Kawa, S. R., and Biraud, S.: Pulsed airborne lidar measurements of atmospheric CO2 column absorption, Tellus, 62, 770–783, 2010. 
Abshire, J. B., Riris, H., Weaver, C. W., Mao, J., Allan, G. R., Hasselbrack, W. E., Weaver, C. J., and Browell, E. W.: Airborne measurements of CO2 column absorption and range using a pulsed direct-detection integrated path differential absorption lidar, Appl. Opt., 52, 4446–4461, 2013. 
Abshire, J. B., Ramanathan, A., Riris, H., Mao, J., Allan, G. R., Hasselbrack, W. E., Weaver, C. J., and Browell, E. W.: Airborne Measurements of CO2 Column Concentration and Range using a Pulsed Direct-Detection IPDA Lidar, P. Soc. Photo-Opt. Ins., 6, 443–469, https://doi.org/10.3390/rs6010443, 2014. 
Abshire, J. B., Ramanathan, A., Riris, H., Allan, G. R., Sun, X., Hasselbrack, W. E., Mao, J., Wu, S., Chen, J., Numata, K., Kawa, S. R., Yang, M. Y., and DiGangi, J.: Airborne Measurements of CO2 Column Concentrations made with a Pulsed IPDA Lidar using a Multiple-Wavelength-Locked Laser and HgCdTe APD Detector, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-360, in review, 2017. 
Download
Short summary
Precise global measurement of CO2 in the Earth’s atmosphere is needed to understand carbon–climate feedbacks. Ideally we would measure from space 24/7 over all land and sea surfaces, in all-sky conditions, clouds, haze or dust and achieve near 100 % usable data. NASA-GSFC has developed a laser instrument to measure CO2 from an aircraft flying at over 40 000 feet as a satellite precursor. Here we demonstrate this measurement capability, highlighting data in the presence of a variety of clouds.