Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 11, issue 1
Atmos. Meas. Tech., 11, 215–232, 2018
https://doi.org/10.5194/amt-11-215-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 11, 215–232, 2018
https://doi.org/10.5194/amt-11-215-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 12 Jan 2018

Research article | 12 Jan 2018

Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations

Catrin I. Meyer et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Catrin Meyer on behalf of the Authors (27 Oct 2017)  Author's response    Manuscript
ED: Publish as is (20 Nov 2017) by Markus Rapp
Publications Copernicus
Download
Short summary
We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) and the High Resolution Dynamics Limb Sounder (HIRDLS). Waves seen by AIRS contribute significantly to momentum flux, which indicates a calculated momentum flux factor. AIRS and HIRDLS agree well in the phase structure of the wave events and also in the seasonal and latitudinal patterns of gravity wave activity and can be used complementary to each other.
We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder...
Citation