Articles | Volume 11, issue 1
https://doi.org/10.5194/amt-11-291-2018
https://doi.org/10.5194/amt-11-291-2018
Research article
 | Highlight paper
 | 
15 Jan 2018
Research article | Highlight paper |  | 15 Jan 2018

A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring

Naomi Zimmerman, Albert A. Presto, Sriniwasa P. N. Kumar, Jason Gu, Aliaksei Hauryliuk, Ellis S. Robinson, Allen L. Robinson, and R. Subramanian

Data sets

A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring (Version v1) N. Zimmerman, A. Presto, S. Kumar, J. Gu, A. Hauryliuk, E. Robinson, A. Robinson, and R. Subramanian https://doi.org/10.5281/zenodo.1146109

Download
Short summary
Low-cost sensors promise neighborhood-scale air quality monitoring but have been plagued by inconsistent performance for precision, accuracy, and drift. CMU and SenSevere collaborated to develop the RAMP, which uses electrochemical sensors. We present a machine learning algorithm that overcomes previous performance issues and meets US EPA's data quality recommendations for personal exposure for NO2 and tougher "supplemental monitoring" standards for CO & ozone across 19 RAMPs for several months.