Articles | Volume 11, issue 1
https://doi.org/10.5194/amt-11-291-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-11-291-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring
Naomi Zimmerman
Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Albert A. Presto
Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Sriniwasa P. N. Kumar
Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Jason Gu
Sensevere LLC, Pittsburgh, PA 15222, USA
Aliaksei Hauryliuk
Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Ellis S. Robinson
Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Allen L. Robinson
Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USA
R. Subramanian
Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Related authors
Mrinmoy Chakraborty, Amanda Giang, and Naomi Zimmerman
Atmos. Meas. Tech., 16, 2333–2352, https://doi.org/10.5194/amt-16-2333-2023, https://doi.org/10.5194/amt-16-2333-2023, 2023
Short summary
Short summary
Black carbon (BC) has important climate and human health impacts. Aethalometers are used to measure BC, but they are hard to deploy in many environments (remote, mobile). We evaluate how well a portable micro-aethalometer (MA300) performs compared to a reference aethalometer at a road-side site in Vancouver, BC, Canada, during regular and wildfire conditions. We find that the MA300 can reproduce overall patterns in concentrations and source characterization but with some underestimation.
Theobard Habineza, Allen L. Robinson, H. Langley DeWitt, Jimmy Gasore, Philip L. Croteau, and Albert A. Presto
Atmos. Chem. Phys., 25, 15953–15968, https://doi.org/10.5194/acp-25-15953-2025, https://doi.org/10.5194/acp-25-15953-2025, 2025
Short summary
Short summary
This study reports year-long PM1 (particulate matter) chemical composition in Eastern Africa using aerosol mass spectrometry. Results show PM is dominated by organic aerosol (73 %), black carbon (16 %), and inorganics (11 %), with BC largely from fossil fuel (59 %) and biomass burning (41 %). Findings highlight the impact of solid fuels and aging vehicles and stress the need for regional mitigation strategies to reduce air pollution-related health risks.
Daniel Furuta, Bruce Wilson, Albert A. Presto, and Jiayu Li
Atmos. Meas. Tech., 17, 2103–2121, https://doi.org/10.5194/amt-17-2103-2024, https://doi.org/10.5194/amt-17-2103-2024, 2024
Short summary
Short summary
Methane is an important driver of climate change and is challenging to inexpensively sense in low atmospheric concentrations. We developed a low-cost sensor to monitor methane and tested it in indoor and outdoor settings. Our device shows promise for monitoring low levels of methane. We characterize its limitations and suggest future research directions for further development.
Sunhye Kim, Jo Machesky, Drew R. Gentner, and Albert A. Presto
Atmos. Chem. Phys., 24, 1281–1298, https://doi.org/10.5194/acp-24-1281-2024, https://doi.org/10.5194/acp-24-1281-2024, 2024
Short summary
Short summary
Cooking emissions are often an overlooked source of air pollution. We used a mobile lab to measure the characteristics of particles emitted from cooking sites in two cities. Our findings showed that cooking releases a substantial number of fine particles. While most emissions were similar, a bakery site showed distinctive chemical compositions with higher nitrogen compound levels. Thus, understanding the particle emissions from different cooking activities is crucial.
Benjamin N. Murphy, Darrell Sonntag, Karl M. Seltzer, Havala O. T. Pye, Christine Allen, Evan Murray, Claudia Toro, Drew R. Gentner, Cheng Huang, Shantanu Jathar, Li Li, Andrew A. May, and Allen L. Robinson
Atmos. Chem. Phys., 23, 13469–13483, https://doi.org/10.5194/acp-23-13469-2023, https://doi.org/10.5194/acp-23-13469-2023, 2023
Short summary
Short summary
We update methods for calculating organic particle and vapor emissions from mobile sources in the USA. Conventionally, particulate matter (PM) and volatile organic carbon (VOC) are speciated without consideration of primary semivolatile emissions. Our methods integrate state-of-the-science speciation profiles and correct for common artifacts when sampling emissions in a laboratory. We quantify impacts of the emission updates on ambient pollution with the Community Multiscale Air Quality model.
Mrinmoy Chakraborty, Amanda Giang, and Naomi Zimmerman
Atmos. Meas. Tech., 16, 2333–2352, https://doi.org/10.5194/amt-16-2333-2023, https://doi.org/10.5194/amt-16-2333-2023, 2023
Short summary
Short summary
Black carbon (BC) has important climate and human health impacts. Aethalometers are used to measure BC, but they are hard to deploy in many environments (remote, mobile). We evaluate how well a portable micro-aethalometer (MA300) performs compared to a reference aethalometer at a road-side site in Vancouver, BC, Canada, during regular and wildfire conditions. We find that the MA300 can reproduce overall patterns in concentrations and source characterization but with some underestimation.
Daniel Furuta, Tofigh Sayahi, Jinsheng Li, Bruce Wilson, Albert A. Presto, and Jiayu Li
Atmos. Meas. Tech., 15, 5117–5128, https://doi.org/10.5194/amt-15-5117-2022, https://doi.org/10.5194/amt-15-5117-2022, 2022
Short summary
Short summary
Methane is a major greenhouse gas and contributor to climate change with various human-caused and natural sources. Currently, atmospheric methane is expensive to sense. We investigate repurposing cheap methane safety sensors for atmospheric sensing, finding several promising sensors and identifying some of the challenges in this approach. This work will help in developing inexpensive sensor networks for methane monitoring, which will aid in reducing methane leaks and emissions.
Rongzhi Tang, Quanyang Lu, Song Guo, Hui Wang, Kai Song, Ying Yu, Rui Tan, Kefan Liu, Ruizhe Shen, Shiyi Chen, Limin Zeng, Spiro D. Jorga, Zhou Zhang, Wenbin Zhang, Shijin Shuai, and Allen L. Robinson
Atmos. Chem. Phys., 21, 2569–2583, https://doi.org/10.5194/acp-21-2569-2021, https://doi.org/10.5194/acp-21-2569-2021, 2021
Short summary
Short summary
We performed chassis dynamometer experiments to investigate the emissions and secondary organic aerosol (SOA) formation potential of intermediate volatility organic compounds (IVOCs) from an on-road Chinese gasoline vehicle. High IVOC emission factors (EFs) and distinct volatility distribution were recognized. Our results indicate that vehicular IVOCs contribute significantly to SOA, implying the importance of reducing IVOCs when making air pollution control policies in urban areas of China.
Cited articles
Air Quality England: Air Pollution Report, 1st January to 31st December 2016, Cambridge Parker Street (Site ID: CAM 1), 1–4, available at: http://www.airqualityengland.co.uk/site/statistics?site_id=CAM1 (last access: 22 June 2017), 2015.
Bart, M., Williams, D. E., Ainslie, B., McKendry, I., Salmond, J., Grange, S. K., Alavi-Shoshtari, M., Steyn, D., and Henshaw, G. S.: High density ozone monitoring using gas sensitive semi-conductor sensors in the lower Fraser valley, British Columbia, Environ. Sci. Technol., 48, 3970–3977, https://doi.org/10.1021/es404610t, 2014.
Borrego, C., Costa, A. M., Ginja, J., Amorim, M., Coutinho, M., Karatzas, K., Sioumis, T., Katsifarakis, N., Konstantinidis, K., De Vito, S., Esposito, E., Smith, P., Andre, N., Gerard, P., Francis, L. A., Castell, N., Schneider, P., Viana, M., Minguillon, M. C., Reimringer, W., Otjes, R. P., von Sicard, O., Pohle, R., Elen, B., Suriano, D., Pfister, V., Prato, M., Dipinto, S., and Penza, M.: Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise, Atmos. Environ., 147, 246–263, https://doi.org/10.1016/j.atmosenv.2016.09.050, 2016.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, 2001.
Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., Broday, D., and Bartonova, A.: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?, Environ. Int., 99, 293–302, https://doi.org/10.1016/j.envint.2016.12.007, 2017.
Cross, E. S., Williams, L. R., Lewis, D. K., Magoon, G. R., Onasch, T. B., Kaminsky, M. L., Worsnop, D. R., and Jayne, J. T.: Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements, Atmos. Meas. Tech., 10, 3575–3588, https://doi.org/10.5194/amt-10-3575-2017, 2017.
Delgado-Saborit, J. M.: Use of real-time sensors to characterise human exposures to combustion related pollutants, J. Environ. Monit., 14, 1824–1837, https://doi.org/10.1039/C2EM10996D, 2012.
De Vito, S., Massera, E., Piga, M., Martinotto, L., and Di Francia, G.: On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario, Sensor. Actuat. B-Chem., 129, 750–757, https://doi.org/10.1016/j.snb.2007.09.060, 2008.
De Vito, S., Piga, M., Martinotto, L., and Di Francia, G.: CO, NO2 and NOx urban pollution monitoring with on-field calibrated electronic nose by automatic bayesian regularization, Sensor. Actuat. B-Chem., 143, 182–191, https://doi.org/10.1016/j.snb.2009.08.041, 2009.
Duvall, R. M., Long, R. W., Beaver, M. R., Kronmiller, K. G., Wheeler, M. L., and Szykman, J. J.: Performance evaluation and community application of low-cost sensors for ozone and nitrogen dioxide, Sensors (Switzerland), 16, 1698, https://doi.org/10.3390/s16101698, 2016.
Esposito, E., De Vito, S., Salvato, M., Bright, V., Jones, R. L., and Popoola, O.: Dynamic neural network architectures for on field stochastic calibration of indicative low cost air quality sensing systems, Sensor. Actuat. B-Chem., 231, 701–713, https://doi.org/10.1016/j.snb.2016.03.038, 2016.
Hagan, D. H., Issacman-Vanwertz, G., Franklin, J. P., Wallace, L. M. M., Kocar, B. D., Heald, C. L., and Kroll, J. H.: Calibration and assessment of electrochemical air quality sensors by co-location with reference-grade instruments, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-296, in review, 2017.
Hitchman, M. L., Cade, N. J., Kim Gibbs, T., and Hedley, N. J. M.: Study of the Factors Affecting Mass Transport in Electrochemical Gas Sensors, Analyst, 122, 1411–1417, https://doi.org/10.1039/a703644b, 1997.
Jiao, W., Hagler, G., Williams, R., Sharpe, R., Brown, R., Garver, D., Judge, R., Caudill, M., Rickard, J., Davis, M., Weinstock, L., Zimmer-Dauphinee, S., and Buckley, K.: Community Air Sensor Network (CAIRSENSE) project: evaluation of low-cost sensor performance in a suburban environment in the southeastern United States, Atmos. Meas. Tech., 9, 5281–5292, https://doi.org/10.5194/amt-9-5281-2016, 2016.
Jolliff, J. K., Kindle, J. C., Shulman, I., Penta, B., Friedrichs, M. A. M., Helber, R., and Arnone, R. A.: Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment, J. Marine Syst., 76, 64–82, https://doi.org/10.1016/j.jmarsys.2008.05.014, 2009.
Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., The R Core Team, Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., and Hunt., T.: caret: Classification and Regression Training, available at: https://cran.r-project.org/package=caret, last access: 23 October 2017.
Lewis, A. and Edwards, P.: Validate personal air-pollution sensors, Nature, 535, 29–31, 2016.
Marshall, J. D., Nethery, E., and Brauer, M.: Within-urban variability in ambient air pollution?: Comparison of estimation methods, Atmos. Environ., 42, 1359–1369, https://doi.org/10.1016/j.atmosenv.2007.08.012, 2008.
Massachusetts Department of Environmental Protection: Massachusetts 2015 Air Quality Report, available at: http://www.mass.gov/eea/docs/dep/air/priorities/15aqrpt.pdf (last access: 23 June 2017), 2016.
Masson, N., Piedrahita, R., and Hannigan, M.: Approach for quantification of metal oxide type semiconductor gas sensors used for ambient air quality monitoring, Sensor. Actuat. B-Chem., 208, 339–345, https://doi.org/10.1016/j.snb.2014.11.032, 2015a.
Masson, N., Piedrahita, R., and Hannigan, M.: Quantification method for electrolytic sensors in long-term monitoring of ambient air quality, Sensors (Switzerland), 15, 27283–27302, https://doi.org/10.3390/s151027283, 2015b.
McKercher, G. R., Salmond, J. A., and Vanos, J. K.: Characteristics and applications of small, portable gaseous air pollution monitors, Environ. Pollut., 223, 102–110, https://doi.org/10.1016/j.envpol.2016.12.045, 2017.
Mead, M. I., Popoola, O. A. M., Stewart, G. B., Landshoff, P., Calleja, M., Hayes, M., Baldovi, J. J., McLeod, M. W., Hodgson, T. F., Dicks, J., Lewis, A., Cohen, J., Baron, R., Saffell, J. R., and Jones, R. L.: The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks, Atmos. Environ., 70, 186–203, https://doi.org/10.1016/j.atmosenv.2012.11.060, 2013.
Moltchanov, S., Levy, I., Etzion, Y., Lerner, U., Broday, D. M., and Fishbain, B.: On the feasibility of measuring urban air pollution by wireless distributed sensor networks, Sci. Total Environ., 502, 537–547, https://doi.org/10.1016/j.scitotenv.2014.09.059, 2015.
Nazelle, A. De, Rodríguez, D. A., and Crawford-Brown, D.: Science of the Total Environment The built environment and health?: Impacts of pedestrian-friendly designs on air pollution exposure, Sci. Total Environ., 407, 2525–2535, https://doi.org/10.1016/j.scitotenv.2009.01.006, 2009.
Oshiro, T. M., Perez, P. S., and Baranauskas, J. A.: How Many Trees in a Random Forest?, in: Machine Learning and Data Mining in Pattern Recognition: 8th International Conference, MLDM 2012, Berlin, Germany, July 13–20, 2012. Proceedings, edited by: Perner, P., Springer Berlin Heidelberg, 154–168, 2012.
Pang, X., Shaw, M. D., Lewis, A. C., Carpenter, L. J., and Batchellier, T.: Electrochemical ozone sensors: A miniaturised alternative for ozone measurements in laboratory experiments and air-quality monitoring, Sensor. Actuat. B-Chem., 240, 829–837, https://doi.org/10.1016/j.snb.2016.09.020, 2017.
Pearson, R.: Assessing Variable Importance for Predictive Models of Arbitrary Type, available at: https://cran.r-project.org/web/packages/datarobot/vignettes/VariableImportance.html, last access: 23 October 2017.
Perpinan Lamigueiro, O.: tdr: Target Diagram, available at: https://cran.r-project.org/package=tdr (last access: 25 June 2017), 2015.
Piedrahita, R., Xiang, Y., Masson, N., Ortega, J., Collier, A., Jiang, Y., Li, K., Dick, R. P., Lv, Q., Hannigan, M., and Shang, L.: The next generation of low-cost personal air quality sensors for quantitative exposure monitoring, Atmos. Meas. Tech., 7, 3325–3336, https://doi.org/10.5194/amt-7-3325-2014, 2014.
Pugh, T. A. M., Mackenzie, A. R., Whyatt, J. D., and Hewitt, C. N.: Effectiveness of Green Infrastructure for Improvement of Air Quality in Urban Street Canyons, Environ. Sci. Technol., 46, 7692–7699, 2012.
Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., and Zeileis, A.: Conditional variable importance for random forests, BMC Bioinformatics, 9, 307, doi:10.1186/1471-2105-9-307, 2008.
Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D., Williams, R. W., Hagler, G. S. W., Shelow, D., Hindin, D. A., Kilaru, V. J., and Preuss, P. W.: The changing paradigm of air pollution monitoring, Environ. Sci. Technol., 47, 11369–77, https://doi.org/10.1021/es4022602, 2013.
Spinelle, L., Aleixandre, M., and Gerboles, M.: Protocol of evaluation and calibration of low-cost gas sensors for the monitoring of air pollution, Eur. Comm. JRC Techical Reports, EUR 26112, https://doi.org/10.2788/9916, 2013.
Spinelle, L., Gerboles, M., Villani, M. G., Aleixandre, M., and Bonavitacola, F.: Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide, Sensor. Actuat. B-Chem., 215, 249–257, https://doi.org/10.1016/j.snb.2015.03.031, 2015.
Spinelle, L., Gerboles, M., Villani, M. G., Aleixandre, M., and Bonavitacola, F.: Field calibration of a cluster of low-cost commercially available sensors for air quality monitoring. Part B: NO, CO and CO2, Sensor. Actuat. B-Chem., 238, 706–715, https://doi.org/10.1016/j.snb.2016.07.036, 2017.
Tan, Y., Lipsky, E. M., Saleh, R., Robinson, A. L., and Presto, A. A.: Characterizing the Spatial Variation of Air Pollutants and the Contributions of High Emitting Vehicles in Pittsburgh, PA, Environ. Sci. Technol., 48, 14186–14194, https://doi.org/10.1021/es5034074, 2014.
United States Environmental Protection Agency: Appendix D, Measurement Quality Objectives and Validation Templates, in: QA Handbook Volume II, 5–12, 2014.
Williams, D. E., Henshaw, G. S., Bart, M., Laing, G., Wagner, J., Naisbitt, S., and Salmond, J. A.: Validation of low-cost ozone measurement instruments suitable for use in an air-quality monitoring network, Meas. Sci. Technol., 24, 065803, https://doi.org/10.1088/0957-0233/24/6/065803, 2013.
Williams, R., Kilaru, V. J., Snyder, E. G., Kaufman, A., Dye, T., Ruttler, A., Russell, A., and Hafner, H.: Air Sensor Guidebook, EPA/600/R-14/159, United States Environmental Protection Agency, 2014.
Zhou, Y. and Levy, J. I.: Factors influencing the spatial extent of mobile source air pollution impacts: a meta-analysis, BMC Public Health, 7, 89, https://doi.org/10.1186/1471-2458-7-89, 2007.
Zimmerman, N., Presto, A., Kumar, S., Gu, J., Hauryliuk, A., Robinson, E., Robinson, A., and Subramanian, R.: A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring (Version v1), https://doi.org/10.5281/zenodo.1146109, 2018.
Short summary
Low-cost sensors promise neighborhood-scale air quality monitoring but have been plagued by inconsistent performance for precision, accuracy, and drift. CMU and SenSevere collaborated to develop the RAMP, which uses electrochemical sensors. We present a machine learning algorithm that overcomes previous performance issues and meets US EPA's data quality recommendations for personal exposure for NO2 and tougher "supplemental monitoring" standards for CO & ozone across 19 RAMPs for several months.
Low-cost sensors promise neighborhood-scale air quality monitoring but have been plagued by...