Articles | Volume 11, issue 1
https://doi.org/10.5194/amt-11-291-2018
https://doi.org/10.5194/amt-11-291-2018
Research article
 | Highlight paper
 | 
15 Jan 2018
Research article | Highlight paper |  | 15 Jan 2018

A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring

Naomi Zimmerman, Albert A. Presto, Sriniwasa P. N. Kumar, Jason Gu, Aliaksei Hauryliuk, Ellis S. Robinson, Allen L. Robinson, and R. Subramanian

Related authors

Performance evaluation of portable dual-spot micro-aethalometers for source identification of black carbon aerosols: application to wildfire smoke and traffic emissions in the Pacific Northwest
Mrinmoy Chakraborty, Amanda Giang, and Naomi Zimmerman
Atmos. Meas. Tech., 16, 2333–2352, https://doi.org/10.5194/amt-16-2333-2023,https://doi.org/10.5194/amt-16-2333-2023, 2023
Short summary
Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring
Carl Malings, Rebecca Tanzer, Aliaksei Hauryliuk, Sriniwasa P. N. Kumar, Naomi Zimmerman, Levent B. Kara, Albert A. Presto, and R. Subramanian
Atmos. Meas. Tech., 12, 903–920, https://doi.org/10.5194/amt-12-903-2019,https://doi.org/10.5194/amt-12-903-2019, 2019
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Gridded surface O3, NOx, and CO abundances for model metrics from the South Korean ground station network
Calum P. Wilson and Michael J. Prather
Atmos. Meas. Tech., 18, 1757–1769, https://doi.org/10.5194/amt-18-1757-2025,https://doi.org/10.5194/amt-18-1757-2025, 2025
Short summary
Revised methodology for CO2 and CH4 measurements at remote sites using a working standard-gas-saving system
Motoki Sasakawa, Noritsugu Tsuda, Toshinobu Machida, Mikhail Arshinov, Denis Davydov, Aleksandr Fofonov, and Boris Belan
Atmos. Meas. Tech., 18, 1717–1730, https://doi.org/10.5194/amt-18-1717-2025,https://doi.org/10.5194/amt-18-1717-2025, 2025
Short summary
Digitization and calibration of historical solar absorption infrared spectra from the Jungfraujoch site
Jamal Makkor, Mathias Palm, Matthias Buschmann, Emmanuel Mahieu, Martyn P. Chipperfield, and Justus Notholt
Atmos. Meas. Tech., 18, 1105–1114, https://doi.org/10.5194/amt-18-1105-2025,https://doi.org/10.5194/amt-18-1105-2025, 2025
Short summary
Direct high-precision radon quantification for interpreting high-frequency greenhouse gas measurements
Dafina Kikaj, Edward Chung, Alan D. Griffiths, Scott D. Chambers, Grant Forster, Angelina Wenger, Penelope Pickers, Chris Rennick, Simon O'Doherty, Joseph Pitt, Kieran Stanley, Dickon Young, Leigh S. Fleming, Karina Adcock, Emmal Safi, and Tim Arnold
Atmos. Meas. Tech., 18, 151–175, https://doi.org/10.5194/amt-18-151-2025,https://doi.org/10.5194/amt-18-151-2025, 2025
Short summary
Resolving the contributions of local emissions to measured concentrations: a method comparison
Taylor D. Edwards, Yee Ka Wong, Cheol-Jeon Heong, Jonathan M. Wang, Yushan Su, and Greg J. Evans
EGUsphere, https://doi.org/10.5194/egusphere-2024-2488,https://doi.org/10.5194/egusphere-2024-2488, 2024
Short summary

Cited articles

Air Quality England: Air Pollution Report, 1st January to 31st December 2016, Cambridge Parker Street (Site ID: CAM 1), 1–4, available at: http://www.airqualityengland.co.uk/site/statistics?site_id=CAM1 (last access: 22 June 2017), 2015.
Bart, M., Williams, D. E., Ainslie, B., McKendry, I., Salmond, J., Grange, S. K., Alavi-Shoshtari, M., Steyn, D., and Henshaw, G. S.: High density ozone monitoring using gas sensitive semi-conductor sensors in the lower Fraser valley, British Columbia, Environ. Sci. Technol., 48, 3970–3977, https://doi.org/10.1021/es404610t, 2014.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, 2001.
Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., Broday, D., and Bartonova, A.: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?, Environ. Int., 99, 293–302, https://doi.org/10.1016/j.envint.2016.12.007, 2017.
Download
Short summary
Low-cost sensors promise neighborhood-scale air quality monitoring but have been plagued by inconsistent performance for precision, accuracy, and drift. CMU and SenSevere collaborated to develop the RAMP, which uses electrochemical sensors. We present a machine learning algorithm that overcomes previous performance issues and meets US EPA's data quality recommendations for personal exposure for NO2 and tougher "supplemental monitoring" standards for CO & ozone across 19 RAMPs for several months.
Share