Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 11, issue 8
Atmos. Meas. Tech., 11, 4775–4795, 2018
https://doi.org/10.5194/amt-11-4775-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 11, 4775–4795, 2018
https://doi.org/10.5194/amt-11-4775-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 15 Aug 2018

Research article | 15 Aug 2018

Separation of the optical and mass features of particle components in different aerosol mixtures by using POLIPHON retrievals in synergy with continuous polarized Micro-Pulse Lidar (P-MPL) measurements

Carmen Córdoba-Jabonero et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Carmen Cordoba-Jabonero on behalf of the Authors (12 Jun 2018)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (13 Jun 2018) by Andrew Sayer
RR by Anonymous Referee #4 (15 Jul 2018)
ED: Publish as is (16 Jul 2018) by Andrew Sayer
Publications Copernicus
Download
Short summary
The high potential of the MPLNET polarized Micro-Pulse LiDAR (P-MPL) is demonstrated in synergy with the POLIPHON (POlarization-LIdar PHOtometer Networking) method to retrieve the vertical separation of both the optical and mass features of the dust, smoke and pollen components mixed with other aerosols. This synergetic procedure can be easily applied to the worldwide MPLNET lidar systems and to space-borne lidars: the ongoing NASA CALIPSO/CALIOP and the forthcoming ESA EarthCARE/ATLID.
The high potential of the MPLNET polarized Micro-Pulse LiDAR (P-MPL) is demonstrated in synergy...
Citation