Chu, X., Pan, W., Papen, G. C., Gardner, C. S., and Gelbwachs, J. A.: Fe
Boltzmann
Temperature Lidar: Design, Error Analysis, and Initial Results at the North
and South Poles, Appl. Optics, 41, 4400–4410, https://doi.org/10.1364/AO.41.004400, 2002. a
Council, N. R.: Earth Science and Applications from Space: National
Imperatives for the Next Decade and Beyond, The National Academies Press,
Washington, DC, https://doi.org/10.17226/11820, available at:
https://www.nap.edu/catalog/11820/earth-science-and-applications-from-space-national-imperatives-for-the
(last access: 28 May 2018), 2007. a
Google Maps: Observatoire de Haute Provence (CNRS) Kernel Description,
available at:
https://www.google.fr/maps/place/Observatoire+de+Haute+Provence+(CNRS)/@43.9236737,5.7183398,
last access: 30 November 2017. a
Dawkins, E. C. M., Feofilov, A., Rezac, L., Kutepov, A. A., Janches, D.,
Höffner, J., Chu, X., Lu, X., Mlynczak, M. G., and Russell, J.:
Validation of SABER v2.0 Operational Temperature Data With Ground-Based
Lidars in the Mesosphere-Lower Thermosphere Region (75–105 km), J. Geophys.
Res.-Atmos., 123, 9916–9934, https://doi.org/10.1029/2018JD028742, 2018. a, b, c, d, e
Dou, X., Li, T., Xu, J., Liu, H.-L., Xue, X., Wang, S., Leblanc, T., McDermid,
I. S., Hauchecorne, A., Keckhut, P., Bencherif, H., Heinselman, C.,
Steinbrecht, W., Mlynczak, M. G., and Russell, J. M.: Seasonal oscillations
of middle atmosphere temperature observed by Rayleigh lidars and their
comparisons with TIMED/SABER observations, J. Geophys. Res.-Atmos., 114, D20103, https://doi.org/10.1029/2008JD011654, 2009. a, b, c, d, e
French, W. J. R. and Mulligan, F. J.: Stability of temperatures from
TIMED/SABER v1.07 (2002–2009) and Aura/MLS v2.2 (2004–2009) compared with
OH(6–2) temperatures observed at Davis Station, Antarctica, Atmos. Chem.
Phys., 10, 11439–11446, https://doi.org/10.5194/acp-10-11439-2010, 2010. a
García-Comas, M., Funke, B., Gardini, A., López-Puertas, M.,
Jurado-Navarro, A., von Clarmann, T., Stiller, G., Kiefer, M., Boone, C. D.,
Leblanc, T., Marshall, B. T., Schwartz, M. J., and Sheese, P. E.: MIPAS
temperature from the stratosphere to the lower thermosphere: Comparison of
vM21 with ACE-FTS, MLS, OSIRIS, SABER, SOFIE and lidar measurements, Atmos.
Meas. Tech., 7, 3633–3651, https://doi.org/10.5194/amt-7-3633-2014, 2014. a, b
Hauchecorne, A., Blanot, L., Wing, R., Keckhut, P., Khaykin, S., Bertaux,
J.-L., Meftah, M., Claud, C., and Sofieva, V.: A new MesosphEO dataset of
temperature profiles from 35 to 85 km using Rayleigh scattering at limb from
GOMOS/ENVISAT daytime observations, Atmos. Meas. Tech. Discuss.,
https://doi.org/10.5194/amt-2018-241, in review, 2018. a, b
Hoppel, K. W., Baker, N. L., Coy, L., Eckermann, S. D., McCormack, J. P.,
Nedoluha, G. E., and Siskind, D. E.: Assimilation of stratospheric and
mesospheric temperatures from MLS and SABER into a global NWP model, Atmos.
Chem. Phys., 8, 6103–6116, https://doi.org/10.5194/acp-8-6103-2008, 2008. a
Johnson, K. W. and Gelman, M. E.: Trends in upper stratospheric
temperatures as observed by rocketsondes (1965–1983), International Council
of Scientific Unions Handbook for MAP, International Council of Scientific
Unions, Urbana, IL, USA, 18, 1985. a
Leblanc, T., McDermid, I. S., Hauchecorne, A., and Keckhut, P.: Evaluation of
optimization of lidar temperature analysis algorithms using simulated data,
J. Geophys. Res.-Atmos., 103, 6177–6187,
https://doi.org/10.1029/97JD03494, 1998. a
Leblanc, T., Sica, R. J., van Gijsel, J. A. E., Godin-Beekmann, S., Haefele,
A., Trickl, T., Payen, G., and Gabarrot, F.: Proposed standardized
definitions for vertical resolution and uncertainty in the NDACC lidar ozone
and temperature algorithms – Part 1: Vertical resolution, Atmos. Meas.
Tech., 9, 4029–4049, https://doi.org/10.5194/amt-9-4029-2016, 2016a. a
Leblanc, T., Sica, R. J., van Gijsel, J. A. E., Haefele, A., Payen, G., and
Liberti, G.: Proposed standardized definitions for vertical resolution and
uncertainty in the NDACC lidar ozone and temperature algorithms – Part 3:
Temperature uncertainty budget, Atmos. Meas. Tech., 9, 4079–4101,
https://doi.org/10.5194/amt-9-4079-2016, 2016b. a
Licel: Licel Data Sheet Kernel Description, available at:
https://http://licel.com/transdat.htm#DNL, last access: 8 August 2018. a
Livesey, N. J., Snyder, W. V., Read, W. G., and Wagner, P. A.: Retrieval
algorithms for the EOS Microwave limb sounder (MLS), IEEE T. Geosci. Remote,
44, 1144–1155, https://doi.org/10.1109/TGRS.2006.872327, 2006. a
Meek, C. E., Manson, A. H., Hocking, W. K., and Drummond, J. R.: Eureka,
80∘ N, SKiYMET meteor radar temperatures compared with Aura MLS
values, Ann. Geophys., 31, 1267–1277,
https://doi.org/10.5194/angeo-31-1267-2013, 2013. a
Mertens, C. J., Mlynczak, M. G., López-Puertas, M., Wintersteiner, P. P.,
Picard, R. H., Winick, J. R., Gordley, L. L., and Russell, J. M.: Retrieval
of mesospheric and lower thermospheric kinetic temperature from measurements
of CO2 15 µm Earth Limb Emission under non-LTE
conditions, Geophys. Res. Lett., 28, 1391–1394, https://doi.org/10.1029/2000GL012189,
2001. a, b
Pautet, P.-D., Taylor, M. J., Pendleton, W. R., Zhao, Y., Yuan, T., Esplin, R.,
and McLain, D.: Advanced mesospheric temperature mapper for high-latitude
airglow studies, Appl. Optics, 53, 5934–5943, https://doi.org/10.1364/AO.53.005934, 2014. a
Remsberg, E. E., Marshall, B. T., Garcia-Comas, M., Krueger, D., Lingenfelser,
G. S., Martin-Torres, J., Mlynczak, M. G., Russell, J. M., Smith, A. K.,
Zhao, Y., Brown, C., Gordley, L. L., Lopez-Gonzalez, M. J., Lopez-Puertas,
M., She, C.-Y., Taylor, M. J., and Thompson, R. E.: Assessment of the quality
of the Version 1.07 temperature-versus-pressure profiles of the middle
atmosphere from TIMED/SABER, J. Geophys. Res.-Atmos.,
113, D17101, https://doi.org/10.1029/2008JD010013, 2008. a, b
Schwartz, M. J., Lambert, A., Manney, G. L., Read, W. G., Livesey, N. J.,
Froidevaux, L., Ao, C. O., Bernath, P. F., Boone, C. D., Cofield, R. E.,
Daffer, W. H., Drouin, B. J., Fetzer, E. J., Fuller, R. A., Jarnot, R. F.,
Jiang, J. H., Jiang, Y. B., Knosp, B. W., Krüger, K., Li, J. F., Mlynczak,
M. G., Pawson, S., Russell, J. M., Santee, M. L., Snyder, W. V., Stek, P. C.,
Thurstans, R. P., Tompkins, A. M., Wagner, P. A., Walker, K. A., Waters,
J. W., and Wu, D. L.: Validation of the Aura Microwave Limb Sounder
temperature and geopotential height measurements, J. Geophys.
Res.-Atmos., 113, D15S11, https://doi.org/10.1029/2007JD008783, 2008. a, b, c, d
Siva Kumar, V., Rao, P. B., and Krishnaiah, M.: Lidar measurements of
stratosphere-mesosphere thermal structure at a low latitude: Comparison with
satellite data and models, J. Geophys. Res.-Atmos., 108, 4342,
https://doi.org/10.1029/2002JD003029, 2003. a, b
Sivakumar, V., Vishnu Prasanth, P., Kishore, P., Bencherif, H., and Keckhut,
P.: Rayleigh LIDAR and satellite (HALOE, SABER, CHAMP and COSMIC)
measurements of stratosphere-mesosphere temperature over a southern
sub-tropical site, Reunion (20.8∘ S; 55.5∘ E): climatology
and comparison study, Ann. Geophys., 29, 649–662,
https://doi.org/10.5194/angeo-29-649-2011, 2011. a, b, c
Taori, A., Dashora, N., Raghunath, K., Russell, J. M., and Mlynczak, M. G.:
Simultaneous mesosphere-thermosphere-ionosphere parameter measurements over
Gadanki (13.5∘ N, 79.2∘ E): First results, J. Geophys. Res.-Space, 116, A07308, https://doi.org/10.1029/2010JA016154, 2011. a, b
Taori, A., Jayaraman, A., Raghunath, K., and Kamalakar, V.: A new method to
derive middle atmospheric temperature profiles using a combination of
Rayleigh lidar and O2 airglow temperatures measurements, Ann.
Geophys., 30, 27–32, https://doi.org/10.5194/angeo-30-27-2012, 2012a. a, b
Taori, A., Kamalakar, V., Raghunath, K., Rao, S., and Russell, J.: Simultaneous
Rayleigh lidar and airglow measurements of middle atmospheric waves over low
latitudes in India, J. Atmos. Sol.-Terr.,
78–79, 62–69, https://doi.org/10.1016/j.jastp.2011.06.012, 2012b. a, b
Waters, J. W., Froidevaux, L., Harwood, R. S., Jarnot, R. F., Pickett, H. M.,
Read, W. G., Siegel, P. H., Cofield, R. E., Filipiak, M. J., Flower, D. A.,
Holden, J. R., Lau, G. K., Livesey, N. J., Manney, G. L., Pumphrey, H. C.,
Santee, M. L., Wu, D. L., Cuddy, D. T., Lay, R. R., Loo, M. S., Perun, V. S.,
Schwartz, M. J., Stek, P. C., Thurstans, R. P., Boyles, M. A., Chandra,
K. M., Chavez, M. C., Chen, G.-S., Chudasama, B. V., Dodge, R., Fuller,
R. A., Girard, M. A., Jiang, J. H., Jiang, Y., Knosp, B. W., LaBelle, R. C.,
Lam, J. C., Lee, K. A., Miller, D., Oswald, J. E., Patel, N. C., Pukala,
D. M., Quintero, O., Scaff, D. M., Snyder, W. V., Tope, M. C., Wagner, P. A.,
and Walch, M. J.: The Earth observing system microwave limb sounder (EOS MLS)
on the aura Satellite, IEEE T. Geosci. Remote,
44, 1075–1092, https://doi.org/10.1109/TGRS.2006.873771, 2006. a, b
Wing, R., Hauchecorne, A., Keckhut, P., Godin-Beekmann, S., Khaykin, S.,
McCullough, E. M., Mariscal, J.-F., and d'Almeida, É.: Lidar temperature
series in the middle atmosphere as a reference data set – Part 1: Improved
retrievals and a 20-year cross-validation of two co-located French lidars,
Atmos. Meas. Tech., 11, 5531–5547, https://doi.org/10.5194/amt-11-5531-2018,
2018. a, b, c, d, e, f, g
Wuebbles, D., Fahey, D., and Hibbard, K.: The Climate Science Special Report
(CSSR) of the Fourth National Climate Assessment (NCA4), in: AGU Fall Meeting
Abstracts, 12–16 December 2016, San Francisco, CA, USA, 2016. a
Xu, J., She, C. Y., Yuan, W., Mertens, C., Mlynczak, M., and Russell, J.:
Comparison between the temperature measurements by TIMED/SABER and lidar in
the midlatitude, J. Geophys. Res.-Space, 111, A10S09,
https://doi.org/10.1029/2005JA011439, 2006.
a
Yuan, T., She, C.-Y., Krueger, D., Reising, S. C., Zhang, X., and
Forbes, J.: A collaborative study on temperature diurnal tide in the
midlatitude mesopause region (41∘ N, 105∘ W) with Na lidar and TIMED/SABER
observations, J. Atmos. Sol.-Terr., 72,
541–549, https://doi.org/10.1016/j.jastp.2010.02.007, 2010. a
Yue, C., Yang, G., Wang, J., Guan, S., Du, L., Cheng, X., and Yang, Y.: Lidar
observations of the middle atmospheric thermal structure over north China and
comparisons with TIMED/SABER, J. Atmos. Sol.-Terr., 120, 80–87, https://doi.org/10.1016/j.jastp.2014.08.017, 2014. a, b, c, d, e