Articles | Volume 11, issue 12
Atmos. Meas. Tech., 11, 6703–6717, 2018
https://doi.org/10.5194/amt-11-6703-2018
Atmos. Meas. Tech., 11, 6703–6717, 2018
https://doi.org/10.5194/amt-11-6703-2018
Research article
18 Dec 2018
Research article | 18 Dec 2018

Lidar temperature series in the middle atmosphere as a reference data set – Part 2: Assessment of temperature observations from MLS/Aura and SABER/TIMED satellites

Robin Wing et al.

Related authors

Evaluation of the new DWD ozone and temperature lidar during the Hohenpeißenberg Ozone Profiling Study (HOPS) and comparison of results with previous NDACC campaigns
Robin Wing, Sophie Godin-Beekmann, Wolfgang Steinbrecht, Thomas J. McGee, John T. Sullivan, Sergey Khaykin, Grant Sumnicht, and Laurence Twigg
Atmos. Meas. Tech., 14, 3773–3794, https://doi.org/10.5194/amt-14-3773-2021,https://doi.org/10.5194/amt-14-3773-2021, 2021
Short summary
Using a network of temperature lidars to identify temperature biases in the upper stratosphere in ECMWF reanalyses
Graeme Marlton, Andrew Charlton-Perez, Giles Harrison, Inna Polichtchouk, Alain Hauchecorne, Philippe Keckhut, Robin Wing, Thierry Leblanc, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 21, 6079–6092, https://doi.org/10.5194/acp-21-6079-2021,https://doi.org/10.5194/acp-21-6079-2021, 2021
Short summary
Intercomparison and evaluation of ground- and satellite-based stratospheric ozone and temperature profiles above Observatoire de Haute-Provence during the Lidar Validation NDACC Experiment (LAVANDE)
Robin Wing, Wolfgang Steinbrecht, Sophie Godin-Beekmann, Thomas J. McGee, John T. Sullivan, Grant Sumnicht, Gérard Ancellet, Alain Hauchecorne, Sergey Khaykin, and Philippe Keckhut
Atmos. Meas. Tech., 13, 5621–5642, https://doi.org/10.5194/amt-13-5621-2020,https://doi.org/10.5194/amt-13-5621-2020, 2020
Short summary
Using a global network of temperature lidars to identify temperature biases in the upper stratosphere in ECMWF reanalyses
Graeme Marlton, Andrew Charlton-Perez, Giles Harrison, Inna Polichtchouk, Alain Hauchecorne, Philippe Keckhut, and Robin Wing
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-254,https://doi.org/10.5194/acp-2020-254, 2020
Preprint withdrawn
Short summary
Doppler lidar at Observatoire de Haute-Provence for wind profiling up to 75 km altitude: performance evaluation and observations
Sergey M. Khaykin, Alain Hauchecorne, Robin Wing, Philippe Keckhut, Sophie Godin-Beekmann, Jacques Porteneuve, Jean-Francois Mariscal, and Jerome Schmitt
Atmos. Meas. Tech., 13, 1501–1516, https://doi.org/10.5194/amt-13-1501-2020,https://doi.org/10.5194/amt-13-1501-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Inter-comparison of atmospheric boundary layer (ABL) height estimates from different profiling sensors and models in the framework of HyMeX-SOP1
Donato Summa, Fabio Madonna, Noemi Franco, Benedetto De Rosa, and Paolo Di Girolamo
Atmos. Meas. Tech., 15, 4153–4170, https://doi.org/10.5194/amt-15-4153-2022,https://doi.org/10.5194/amt-15-4153-2022, 2022
Short summary
Evaluation of Aeolus L2B wind product with wind profiling radar measurements and numerical weather prediction model equivalents over Australia
Haichen Zuo, Charlotte Bay Hasager, Ioanna Karagali, Ad Stoffelen, Gert-Jan Marseille, and Jos de Kloe
Atmos. Meas. Tech., 15, 4107–4124, https://doi.org/10.5194/amt-15-4107-2022,https://doi.org/10.5194/amt-15-4107-2022, 2022
Short summary
Comparison of global UV spectral irradiance measurements between a BTS CCD-array and a Brewer spectroradiometer
Carmen González, José M. Vilaplana, José A. Bogeat, and Antonio Serrano
Atmos. Meas. Tech., 15, 4125–4133, https://doi.org/10.5194/amt-15-4125-2022,https://doi.org/10.5194/amt-15-4125-2022, 2022
Short summary
Scan strategies for wind profiling with Doppler lidar – an large-eddy simulation (LES)-based evaluation
Charlotte Rahlves, Frank Beyrich, and Siegfried Raasch
Atmos. Meas. Tech., 15, 2839–2856, https://doi.org/10.5194/amt-15-2839-2022,https://doi.org/10.5194/amt-15-2839-2022, 2022
Short summary
Exploiting Aeolus level-2b winds to better characterize atmospheric motion vector bias and uncertainty
Katherine E. Lukens, Kayo Ide, Kevin Garrett, Hui Liu, David Santek, Brett Hoover, and Ross N. Hoffman
Atmos. Meas. Tech., 15, 2719–2743, https://doi.org/10.5194/amt-15-2719-2022,https://doi.org/10.5194/amt-15-2719-2022, 2022
Short summary

Cited articles

Chu, X., Pan, W., Papen, G. C., Gardner, C. S., and Gelbwachs, J. A.: Fe Boltzmann Temperature Lidar: Design, Error Analysis, and Initial Results at the North and South Poles, Appl. Optics, 41, 4400–4410, https://doi.org/10.1364/AO.41.004400, 2002. a
Council, N. R.: Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, The National Academies Press, Washington, DC, https://doi.org/10.17226/11820, available at: https://www.nap.edu/catalog/11820/earth-science-and-applications-from-space-national-imperatives-for-the (last access: 28 May 2018), 2007. a
Google Maps: Observatoire de Haute Provence (CNRS) Kernel Description, available at: https://www.google.fr/maps/place/Observatoire+de+Haute+Provence+(CNRS)/@43.9236737,5.7183398, last access: 30 November 2017. a
Dawkins, E. C. M., Feofilov, A., Rezac, L., Kutepov, A. A., Janches, D., Höffner, J., Chu, X., Lu, X., Mlynczak, M. G., and Russell, J.: Validation of SABER v2.0 Operational Temperature Data With Ground-Based Lidars in the Mesosphere-Lower Thermosphere Region (75–105 km), J. Geophys. Res.-Atmos., 123, 9916–9934, https://doi.org/10.1029/2018JD028742, 2018. a, b, c, d, e
Dou, X., Li, T., Xu, J., Liu, H.-L., Xue, X., Wang, S., Leblanc, T., McDermid, I. S., Hauchecorne, A., Keckhut, P., Bencherif, H., Heinselman, C., Steinbrecht, W., Mlynczak, M. G., and Russell, J. M.: Seasonal oscillations of middle atmosphere temperature observed by Rayleigh lidars and their comparisons with TIMED/SABER observations, J. Geophys. Res.-Atmos., 114, D20103, https://doi.org/10.1029/2008JD011654, 2009. a, b, c, d, e
Short summary
We have compared 2433 nights of OHP lidar temperatures (2002–2018) to temperatures derived from the satellites SABER and MLS. We have found a winter stratopause cold bias in the satellite measurements with respect to the lidar (−6 K for SABER and −17 K for MLS), a summer mesospheric warm bias for SABER (6 K near 60 km), and a vertically structured bias for MLS (−4 to 4 K). We have corrected the satellite data based on the lidar-determined stratopause height and found a significant improvement.