Articles | Volume 11, issue 2
https://doi.org/10.5194/amt-11-681-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-11-681-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The potential of satellite spectro-imagery for monitoring CO2 emissions from large cities
Grégoire Broquet
CORRESPONDING AUTHOR
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
François-Marie Bréon
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Emmanuel Renault
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
now at: Service hydrographique et océanographique de la marine, 29228
Brest, France
Michael Buchwitz
Institute of Environmental Physics (IUP), University of Bremen FB1,
Otto Hahn Allee 1, 28334 Bremen, Germany
Maximilian Reuter
Institute of Environmental Physics (IUP), University of Bremen FB1,
Otto Hahn Allee 1, 28334 Bremen, Germany
Heinrich Bovensmann
Institute of Environmental Physics (IUP), University of Bremen FB1,
Otto Hahn Allee 1, 28334 Bremen, Germany
Frédéric Chevallier
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Lin Wu
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Philippe Ciais
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Viewed
Total article views: 4,896 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 04 Aug 2017)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
3,268 | 1,506 | 122 | 4,896 | 572 | 132 | 158 |
- HTML: 3,268
- PDF: 1,506
- XML: 122
- Total: 4,896
- Supplement: 572
- BibTeX: 132
- EndNote: 158
Total article views: 3,752 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 07 Feb 2018)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,404 | 1,234 | 114 | 3,752 | 386 | 126 | 143 |
- HTML: 2,404
- PDF: 1,234
- XML: 114
- Total: 3,752
- Supplement: 386
- BibTeX: 126
- EndNote: 143
Total article views: 1,144 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 04 Aug 2017)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
864 | 272 | 8 | 1,144 | 186 | 6 | 15 |
- HTML: 864
- PDF: 272
- XML: 8
- Total: 1,144
- Supplement: 186
- BibTeX: 6
- EndNote: 15
Viewed (geographical distribution)
Total article views: 4,896 (including HTML, PDF, and XML)
Thereof 4,734 with geography defined
and 162 with unknown origin.
Total article views: 3,752 (including HTML, PDF, and XML)
Thereof 3,659 with geography defined
and 93 with unknown origin.
Total article views: 1,144 (including HTML, PDF, and XML)
Thereof 1,075 with geography defined
and 69 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
49 citations as recorded by crossref.
- Observing carbon dioxide emissions over China's cities and industrial areas with the Orbiting Carbon Observatory-2 B. Zheng et al. 10.5194/acp-20-8501-2020
- Estimating Global Anthropogenic CO2 Gridded Emissions Using a Data-Driven Stacked Random Forest Regression Model Y. Zhang et al. 10.3390/rs14163899
- Accounting for meteorological biases in simulated plumes using smarter metrics P. Vanderbecken et al. 10.5194/amt-16-1745-2023
- A global map of emission clumps for future monitoring of fossil fuel CO<sub>2</sub> emissions from space Y. Wang et al. 10.5194/essd-11-687-2019
- Pixel Size and Revisit Rate Requirements for Monitoring Power Plant CO2 Emissions from Space T. Hill & R. Nassar 10.3390/rs11131608
- Improved estimation of CO2 emissions from thermal power plants based on OCO-2 XCO2 retrieval using inline plume simulation Y. Li et al. 10.1016/j.scitotenv.2023.169586
- Determination of the emission rates of CO<sub>2</sub> point sources with airborne lidar S. Wolff et al. 10.5194/amt-14-2717-2021
- Optimizing a dynamic fossil fuel CO<sub>2</sub> emission model with CTDAS (CarbonTracker Data Assimilation Shell, v1.0) for an urban area using atmospheric observations of CO<sub>2</sub>, CO, NO<sub><i>x</i></sub>, and SO<sub>2</sub> I. Super et al. 10.5194/gmd-13-2695-2020
- The Space Carbon Observatory (SCARBO) concept: assessment of XCO2 and XCH4 retrieval performance M. Dogniaux et al. 10.5194/amt-15-4835-2022
- Estimating power plant CO2 emission using OCO-2 XCO2 and high resolution WRF-Chem simulations T. Zheng et al. 10.1088/1748-9326/ab25ae
- Detectability of CO<sub>2</sub> emission plumes of cities and power plants with the Copernicus Anthropogenic CO<sub>2</sub> Monitoring (CO2M) mission G. Kuhlmann et al. 10.5194/amt-12-6695-2019
- A local- to national-scale inverse modeling system to assess the potential of spaceborne CO<sub>2</sub> measurements for the monitoring of anthropogenic emissions D. Santaren et al. 10.5194/amt-14-403-2021
- Urban carbon accounting: An overview L. Yin et al. 10.1016/j.uclim.2022.101195
- Local Anomalies in the Column‐Averaged Dry Air Mole Fractions of Carbon Dioxide Across the Globe During the First Months of the Coronavirus Recession F. Chevallier et al. 10.1029/2020GL090244
- The CO<sub>2</sub> integral emission by the megacity of St Petersburg as quantified from ground-based FTIR measurements combined with dispersion modelling D. Ionov et al. 10.5194/acp-21-10939-2021
- Complementing XCO2 imagery with ground-based CO2 and 14CO2 measurements to monitor CO2 emissions from fossil fuels on a regional to local scale E. Potier et al. 10.5194/amt-15-5261-2022
- Spectral sizing of a coarse-spectral-resolution satellite sensor for XCO<sub>2</sub> J. Wilzewski et al. 10.5194/amt-13-731-2020
- XCO<sub>2</sub> in an emission hot-spot region: the COCCON Paris campaign 2015 F. Vogel et al. 10.5194/acp-19-3271-2019
- The CO2 Human Emissions (CHE) Project: First Steps Towards a European Operational Capacity to Monitor Anthropogenic CO2 Emissions G. Balsamo et al. 10.3389/frsen.2021.707247
- Quantifying CO2 Emissions of Power Plants With CO2 and NO2 Imaging Satellites G. Kuhlmann et al. 10.3389/frsen.2021.689838
- UAV Databased Temperature Patterns Analysis with Carbon Emission Detection Using Deep Neural Network S. Mohanty et al. 10.1007/s41976-024-00143-x
- Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5) I. Super et al. 10.5194/gmd-17-7263-2024
- The ddeq Python library for point source quantification from remote sensing images (version 1.0) G. Kuhlmann et al. 10.5194/gmd-17-4773-2024
- Theoretical assessment of the ability of the MicroCarb satellite city-scan observing mode to estimate urban CO2 emissions K. Wu et al. 10.5194/amt-16-581-2023
- PMIF v1.0: assessing the potential of satellite observations to constrain CO<sub>2</sub> emissions from large cities and point sources over the globe using synthetic data Y. Wang et al. 10.5194/gmd-13-5813-2020
- Spatialization and driving factors of carbon budget at county level in the Yangtze River Delta of China S. Wang et al. 10.1007/s11356-023-28917-8
- Far-field biogenic and anthropogenic emissions as a dominant source of variability in local urban carbon budgets: A global high-resolution model study with implications for satellite remote sensing A. Schuh et al. 10.1016/j.rse.2021.112473
- Enhancing scientific transparency in national CO2 emissions reports via satellite-based a posteriori estimates M. Watanabe et al. 10.1038/s41598-023-42664-3
- Automated detection of atmospheric NO<sub>2</sub> plumes from satellite data: a tool to help infer anthropogenic combustion emissions D. Finch et al. 10.5194/amt-15-721-2022
- Greenhouse gas retrievals for the CO2M mission using the FOCAL method: first performance estimates S. Noël et al. 10.5194/amt-17-2317-2024
- Exploring Urban XCO2 Patterns Using PRISMA Satellite: A Case Study in Shanghai Y. Wu et al. 10.3390/atmos15030246
- The potential of a constellation of low earth orbit satellite imagers to monitor worldwide fossil fuel CO2 emissions from large cities and point sources F. Lespinas et al. 10.1186/s13021-020-00153-4
- Characterization of a commercial lower-cost medium-precision non-dispersive infrared sensor for atmospheric CO<sub>2</sub> monitoring in urban areas E. Arzoumanian et al. 10.5194/amt-12-2665-2019
- Evaluating the Ability of the Pre-Launch TanSat-2 Satellite to Quantify Urban CO2 Emissions K. Wu et al. 10.3390/rs15204904
- Large CO2 Emitters as Seen From Satellite: Comparison to a Gridded Global Emission Inventory F. Chevallier et al. 10.1029/2021GL097540
- Spatial temporal pattern of carbon dioxide emission from vehicle N. Yaacob et al. 10.1088/1755-1315/1167/1/012009
- Monitoring and quantifying CO2emissions of isolated power plants from space X. Lin et al. 10.5194/acp-23-6599-2023
- Estimating carbon emissions from thermal power plants based on thermal characteristics K. Li et al. 10.1016/j.jag.2024.103768
- Detection of fossil fuel emission trends in the presence of natural carbon cycle variability Y. Yin et al. 10.1088/1748-9326/ab2dd7
- Monitoring fossil fuel CO2 emissions from co-emitted NO2 observed from space: progress, challenges, and future perspectives H. Li et al. 10.1007/s11783-025-1922-x
- Deep learning applied to CO2 power plant emissions quantification using simulated satellite images J. Dumont Le Brazidec et al. 10.5194/gmd-17-1995-2024
- Quantifying CO<sub>2</sub> emissions of a city with the Copernicus Anthropogenic CO<sub>2</sub> Monitoring satellite mission G. Kuhlmann et al. 10.5194/amt-13-6733-2020
- Can a regional-scale reduction of atmospheric CO<sub>2</sub> during the COVID-19 pandemic be detected from space? A case study for East China using satellite XCO<sub>2</sub> retrievals M. Buchwitz et al. 10.5194/amt-14-2141-2021
- Emerging reporting and verification needs under the Paris Agreement: How can the research community effectively contribute? L. Perugini et al. 10.1016/j.envsci.2021.04.012
- Accounting for the vertical distribution of emissions in atmospheric CO<sub>2</sub> simulations D. Brunner et al. 10.5194/acp-19-4541-2019
- The Influence of Instrumental Line Shape Degradation on Gas Retrievals and Observation of Greenhouse Gases in Maoming, China D. Liu et al. 10.3390/atmos12070863
- Evaluation of light atmospheric plume inversion methods using synthetic XCO2 satellite images to compute Paris CO2 emissions A. Danjou et al. 10.1016/j.rse.2023.113900
- Mapping the CO2 total column retrieval performance from shortwave infrared measurements: synthetic impacts of the spectral resolution, signal-to-noise ratio, and spectral band selection M. Dogniaux & C. Crevoisier 10.5194/amt-17-5373-2024
- Sensitivity to the sources of uncertainties in the modeling of atmospheric CO<sub>2</sub> concentration within and in the vicinity of Paris J. Lian et al. 10.5194/acp-21-10707-2021
49 citations as recorded by crossref.
- Observing carbon dioxide emissions over China's cities and industrial areas with the Orbiting Carbon Observatory-2 B. Zheng et al. 10.5194/acp-20-8501-2020
- Estimating Global Anthropogenic CO2 Gridded Emissions Using a Data-Driven Stacked Random Forest Regression Model Y. Zhang et al. 10.3390/rs14163899
- Accounting for meteorological biases in simulated plumes using smarter metrics P. Vanderbecken et al. 10.5194/amt-16-1745-2023
- A global map of emission clumps for future monitoring of fossil fuel CO<sub>2</sub> emissions from space Y. Wang et al. 10.5194/essd-11-687-2019
- Pixel Size and Revisit Rate Requirements for Monitoring Power Plant CO2 Emissions from Space T. Hill & R. Nassar 10.3390/rs11131608
- Improved estimation of CO2 emissions from thermal power plants based on OCO-2 XCO2 retrieval using inline plume simulation Y. Li et al. 10.1016/j.scitotenv.2023.169586
- Determination of the emission rates of CO<sub>2</sub> point sources with airborne lidar S. Wolff et al. 10.5194/amt-14-2717-2021
- Optimizing a dynamic fossil fuel CO<sub>2</sub> emission model with CTDAS (CarbonTracker Data Assimilation Shell, v1.0) for an urban area using atmospheric observations of CO<sub>2</sub>, CO, NO<sub><i>x</i></sub>, and SO<sub>2</sub> I. Super et al. 10.5194/gmd-13-2695-2020
- The Space Carbon Observatory (SCARBO) concept: assessment of XCO2 and XCH4 retrieval performance M. Dogniaux et al. 10.5194/amt-15-4835-2022
- Estimating power plant CO2 emission using OCO-2 XCO2 and high resolution WRF-Chem simulations T. Zheng et al. 10.1088/1748-9326/ab25ae
- Detectability of CO<sub>2</sub> emission plumes of cities and power plants with the Copernicus Anthropogenic CO<sub>2</sub> Monitoring (CO2M) mission G. Kuhlmann et al. 10.5194/amt-12-6695-2019
- A local- to national-scale inverse modeling system to assess the potential of spaceborne CO<sub>2</sub> measurements for the monitoring of anthropogenic emissions D. Santaren et al. 10.5194/amt-14-403-2021
- Urban carbon accounting: An overview L. Yin et al. 10.1016/j.uclim.2022.101195
- Local Anomalies in the Column‐Averaged Dry Air Mole Fractions of Carbon Dioxide Across the Globe During the First Months of the Coronavirus Recession F. Chevallier et al. 10.1029/2020GL090244
- The CO<sub>2</sub> integral emission by the megacity of St Petersburg as quantified from ground-based FTIR measurements combined with dispersion modelling D. Ionov et al. 10.5194/acp-21-10939-2021
- Complementing XCO2 imagery with ground-based CO2 and 14CO2 measurements to monitor CO2 emissions from fossil fuels on a regional to local scale E. Potier et al. 10.5194/amt-15-5261-2022
- Spectral sizing of a coarse-spectral-resolution satellite sensor for XCO<sub>2</sub> J. Wilzewski et al. 10.5194/amt-13-731-2020
- XCO<sub>2</sub> in an emission hot-spot region: the COCCON Paris campaign 2015 F. Vogel et al. 10.5194/acp-19-3271-2019
- The CO2 Human Emissions (CHE) Project: First Steps Towards a European Operational Capacity to Monitor Anthropogenic CO2 Emissions G. Balsamo et al. 10.3389/frsen.2021.707247
- Quantifying CO2 Emissions of Power Plants With CO2 and NO2 Imaging Satellites G. Kuhlmann et al. 10.3389/frsen.2021.689838
- UAV Databased Temperature Patterns Analysis with Carbon Emission Detection Using Deep Neural Network S. Mohanty et al. 10.1007/s41976-024-00143-x
- Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5) I. Super et al. 10.5194/gmd-17-7263-2024
- The ddeq Python library for point source quantification from remote sensing images (version 1.0) G. Kuhlmann et al. 10.5194/gmd-17-4773-2024
- Theoretical assessment of the ability of the MicroCarb satellite city-scan observing mode to estimate urban CO2 emissions K. Wu et al. 10.5194/amt-16-581-2023
- PMIF v1.0: assessing the potential of satellite observations to constrain CO<sub>2</sub> emissions from large cities and point sources over the globe using synthetic data Y. Wang et al. 10.5194/gmd-13-5813-2020
- Spatialization and driving factors of carbon budget at county level in the Yangtze River Delta of China S. Wang et al. 10.1007/s11356-023-28917-8
- Far-field biogenic and anthropogenic emissions as a dominant source of variability in local urban carbon budgets: A global high-resolution model study with implications for satellite remote sensing A. Schuh et al. 10.1016/j.rse.2021.112473
- Enhancing scientific transparency in national CO2 emissions reports via satellite-based a posteriori estimates M. Watanabe et al. 10.1038/s41598-023-42664-3
- Automated detection of atmospheric NO<sub>2</sub> plumes from satellite data: a tool to help infer anthropogenic combustion emissions D. Finch et al. 10.5194/amt-15-721-2022
- Greenhouse gas retrievals for the CO2M mission using the FOCAL method: first performance estimates S. Noël et al. 10.5194/amt-17-2317-2024
- Exploring Urban XCO2 Patterns Using PRISMA Satellite: A Case Study in Shanghai Y. Wu et al. 10.3390/atmos15030246
- The potential of a constellation of low earth orbit satellite imagers to monitor worldwide fossil fuel CO2 emissions from large cities and point sources F. Lespinas et al. 10.1186/s13021-020-00153-4
- Characterization of a commercial lower-cost medium-precision non-dispersive infrared sensor for atmospheric CO<sub>2</sub> monitoring in urban areas E. Arzoumanian et al. 10.5194/amt-12-2665-2019
- Evaluating the Ability of the Pre-Launch TanSat-2 Satellite to Quantify Urban CO2 Emissions K. Wu et al. 10.3390/rs15204904
- Large CO2 Emitters as Seen From Satellite: Comparison to a Gridded Global Emission Inventory F. Chevallier et al. 10.1029/2021GL097540
- Spatial temporal pattern of carbon dioxide emission from vehicle N. Yaacob et al. 10.1088/1755-1315/1167/1/012009
- Monitoring and quantifying CO2emissions of isolated power plants from space X. Lin et al. 10.5194/acp-23-6599-2023
- Estimating carbon emissions from thermal power plants based on thermal characteristics K. Li et al. 10.1016/j.jag.2024.103768
- Detection of fossil fuel emission trends in the presence of natural carbon cycle variability Y. Yin et al. 10.1088/1748-9326/ab2dd7
- Monitoring fossil fuel CO2 emissions from co-emitted NO2 observed from space: progress, challenges, and future perspectives H. Li et al. 10.1007/s11783-025-1922-x
- Deep learning applied to CO2 power plant emissions quantification using simulated satellite images J. Dumont Le Brazidec et al. 10.5194/gmd-17-1995-2024
- Quantifying CO<sub>2</sub> emissions of a city with the Copernicus Anthropogenic CO<sub>2</sub> Monitoring satellite mission G. Kuhlmann et al. 10.5194/amt-13-6733-2020
- Can a regional-scale reduction of atmospheric CO<sub>2</sub> during the COVID-19 pandemic be detected from space? A case study for East China using satellite XCO<sub>2</sub> retrievals M. Buchwitz et al. 10.5194/amt-14-2141-2021
- Emerging reporting and verification needs under the Paris Agreement: How can the research community effectively contribute? L. Perugini et al. 10.1016/j.envsci.2021.04.012
- Accounting for the vertical distribution of emissions in atmospheric CO<sub>2</sub> simulations D. Brunner et al. 10.5194/acp-19-4541-2019
- The Influence of Instrumental Line Shape Degradation on Gas Retrievals and Observation of Greenhouse Gases in Maoming, China D. Liu et al. 10.3390/atmos12070863
- Evaluation of light atmospheric plume inversion methods using synthetic XCO2 satellite images to compute Paris CO2 emissions A. Danjou et al. 10.1016/j.rse.2023.113900
- Mapping the CO2 total column retrieval performance from shortwave infrared measurements: synthetic impacts of the spectral resolution, signal-to-noise ratio, and spectral band selection M. Dogniaux & C. Crevoisier 10.5194/amt-17-5373-2024
- Sensitivity to the sources of uncertainties in the modeling of atmospheric CO<sub>2</sub> concentration within and in the vicinity of Paris J. Lian et al. 10.5194/acp-21-10707-2021
Latest update: 14 Dec 2024
Short summary
This study assesses the potential of space-borne imagery of CO2 atmospheric concentrations for monitoring the emissions from the Paris area. Such imagery could be provided by European and American missions in the next decade. It highlights the difficulty to improve current knowledge on CO2 emissions for urban areas with CO2 observations from satellites, and calls for more technological innovations in the remote sensing of CO2 and in the models that exploit it.
This study assesses the potential of space-borne imagery of CO2 atmospheric concentrations for...