Articles | Volume 11, issue 2
https://doi.org/10.5194/amt-11-925-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-11-925-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Collocation mismatch uncertainties in satellite aerosol retrieval validation
Finnish Meteorological Institute, Helsinki, Finland
Pekka Kolmonen
Finnish Meteorological Institute, Helsinki, Finland
Larisa Sogacheva
Finnish Meteorological Institute, Helsinki, Finland
Edith Rodríguez
Finnish Meteorological Institute, Helsinki, Finland
Giulia Saponaro
Finnish Meteorological Institute, Helsinki, Finland
Gerrit de Leeuw
Finnish Meteorological Institute, Helsinki, Finland
Viewed
Total article views: 3,354 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 23 Nov 2017)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,131 | 1,124 | 99 | 3,354 | 554 | 95 | 93 |
- HTML: 2,131
- PDF: 1,124
- XML: 99
- Total: 3,354
- Supplement: 554
- BibTeX: 95
- EndNote: 93
Total article views: 2,714 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 16 Feb 2018)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,800 | 823 | 91 | 2,714 | 395 | 90 | 88 |
- HTML: 1,800
- PDF: 823
- XML: 91
- Total: 2,714
- Supplement: 395
- BibTeX: 90
- EndNote: 88
Total article views: 640 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 23 Nov 2017)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
331 | 301 | 8 | 640 | 159 | 5 | 5 |
- HTML: 331
- PDF: 301
- XML: 8
- Total: 640
- Supplement: 159
- BibTeX: 5
- EndNote: 5
Viewed (geographical distribution)
Total article views: 3,354 (including HTML, PDF, and XML)
Thereof 3,206 with geography defined
and 148 with unknown origin.
Total article views: 2,714 (including HTML, PDF, and XML)
Thereof 2,589 with geography defined
and 125 with unknown origin.
Total article views: 640 (including HTML, PDF, and XML)
Thereof 617 with geography defined
and 23 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
30 citations as recorded by crossref.
- Spatial and seasonal variations of aerosols over China from two decades of multi-satellite observations – Part 1: ATSR (1995–2011) and MODIS C6.1 (2000–2017) L. Sogacheva et al. 10.5194/acp-18-11389-2018
- High‐Resolution Post‐Process Corrected Satellite AOD H. Taskinen et al. 10.1029/2022GL099733
- Evaluation of LaSRC aerosol optical depth from Landsat-8 and Sentinel-2 in Guangdong-Hong Kong-Macao greater bay area, China Y. Jin et al. 10.1016/j.atmosenv.2022.119128
- Merging regional and global aerosol optical depth records from major available satellite products L. Sogacheva et al. 10.5194/acp-20-2031-2020
- Aerosol Optical Depth Retrieval Over Land from Particulate Observing Scanning Polarimeter (POSP) Using a New Look-Up Table (LUT) Method Z. Ji et al. 10.1007/s41810-024-00236-6
- Monitoring multiple satellite aerosol optical depth (AOD) products within the Copernicus Atmosphere Monitoring Service (CAMS) data assimilation system S. Garrigues et al. 10.5194/acp-22-14657-2022
- A Critical Evaluation of Deep Blue Algorithm Derived AVHRR Aerosol Product Over China L. Mei et al. 10.1029/2018JD029929
- A novel method of identifying and analysing oil smoke plumes based on MODIS and CALIPSO satellite data A. Mereuţă et al. 10.5194/acp-22-5071-2022
- Satellite remote sensing of aerosol optical depth: advances, challenges, and perspectives X. Wei et al. 10.1080/10643389.2019.1665944
- AEROCOM and AEROSAT AAOD and SSA study – Part 1: Evaluation and intercomparison of satellite measurements N. Schutgens et al. 10.5194/acp-21-6895-2021
- Assessment of smoke plume height products derived from multisource satellite observations using lidar-derived height metrics for wildfires in the western US J. Huang et al. 10.5194/acp-24-3673-2024
- Aerosol Evolution and Influencing Factor Analysis during Haze Periods in the Guanzhong Area of China Based on Multi-Source Data Y. Zhong et al. 10.3390/atmos13121975
- Assessment of the Representativeness of MODIS Aerosol Optical Depth Products at Different Temporal Scales Using Global AERONET Measurements Y. Tong et al. 10.3390/rs12142330
- A review and framework for the evaluation of pixel-level uncertainty estimates in satellite aerosol remote sensing A. Sayer et al. 10.5194/amt-13-373-2020
- Spatio-Temporal Variability of Aerosol Optical Depth, Total Ozone and NO2 Over East Asia: Strategy for the Validation to the GEMS Scientific Products S. Park et al. 10.3390/rs12142256
- Automated Low-Cost LED-Based Sun Photometer for City Scale Distributed Measurements C. Garrido et al. 10.3390/rs13224585
- Validation of SOAR VIIRS Over‐Water Aerosol Retrievals and Context Within the Global Satellite Aerosol Data Record A. Sayer et al. 10.1029/2018JD029465
- How Long Is Too Long? Variogram Analysis of AERONET Data to Aid Aerosol Validation and Intercomparison Studies A. Sayer 10.1029/2020EA001290
- Effective uncertainty quantification for multi-angle polarimetric aerosol remote sensing over ocean M. Gao et al. 10.5194/amt-15-4859-2022
- Deep-learning-based post-process correction of the aerosol parameters in the high-resolution Sentinel-3 Level-2 Synergy product A. Lipponen et al. 10.5194/amt-15-895-2022
- Validation, Stability, and Consistency of MODIS Collection 6.1 and VIIRS Version 1 Deep Blue Aerosol Data Over Land A. Sayer et al. 10.1029/2018JD029598
- An AeroCom–AeroSat study: intercomparison of satellite AOD datasets for aerosol model evaluation N. Schutgens et al. 10.5194/acp-20-12431-2020
- Validation and inter-comparison of MODIS and VIIRS aerosol optical depth products against data from multiple observation networks over East China Y. Su et al. 10.1016/j.atmosenv.2021.118205
- Comparison and evaluation of multiple satellite aerosol products over China in different scenarios under a unified criterion: Preparation for consistent and high-quality dataset construction H. Zhu et al. 10.1016/j.atmosres.2022.106374
- Investigating multiple aerosol optical depth products from MODIS and VIIRS over Asia: Evaluation, comparison, and merging Y. Wang et al. 10.1016/j.atmosenv.2020.117548
- Understanding MODIS dark-target collection 5 and 6 aerosol data over China: Effect of surface type, aerosol loading and aerosol absorption L. Mei et al. 10.1016/j.atmosres.2019.05.023
- Combining CALIPSO and AERONET Data to Classify Aerosols Globally Y. Lin et al. 10.1109/TGRS.2021.3138085
- The impact and estimation of uncertainty correlation for multi-angle polarimetric remote sensing of aerosols and ocean color M. Gao et al. 10.5194/amt-16-2067-2023
- Site representativity of AERONET and GAW remotely sensed aerosol optical thickness and absorbing aerosol optical thickness observations N. Schutgens 10.5194/acp-20-7473-2020
- Window-Based Filtering Aerosol Retrieval Algorithm of Fine-Scale Remote Sensing Images: A Case Using Sentinel-2 Data in Beijing Region J. Zhou et al. 10.3390/rs15082172
30 citations as recorded by crossref.
- Spatial and seasonal variations of aerosols over China from two decades of multi-satellite observations – Part 1: ATSR (1995–2011) and MODIS C6.1 (2000–2017) L. Sogacheva et al. 10.5194/acp-18-11389-2018
- High‐Resolution Post‐Process Corrected Satellite AOD H. Taskinen et al. 10.1029/2022GL099733
- Evaluation of LaSRC aerosol optical depth from Landsat-8 and Sentinel-2 in Guangdong-Hong Kong-Macao greater bay area, China Y. Jin et al. 10.1016/j.atmosenv.2022.119128
- Merging regional and global aerosol optical depth records from major available satellite products L. Sogacheva et al. 10.5194/acp-20-2031-2020
- Aerosol Optical Depth Retrieval Over Land from Particulate Observing Scanning Polarimeter (POSP) Using a New Look-Up Table (LUT) Method Z. Ji et al. 10.1007/s41810-024-00236-6
- Monitoring multiple satellite aerosol optical depth (AOD) products within the Copernicus Atmosphere Monitoring Service (CAMS) data assimilation system S. Garrigues et al. 10.5194/acp-22-14657-2022
- A Critical Evaluation of Deep Blue Algorithm Derived AVHRR Aerosol Product Over China L. Mei et al. 10.1029/2018JD029929
- A novel method of identifying and analysing oil smoke plumes based on MODIS and CALIPSO satellite data A. Mereuţă et al. 10.5194/acp-22-5071-2022
- Satellite remote sensing of aerosol optical depth: advances, challenges, and perspectives X. Wei et al. 10.1080/10643389.2019.1665944
- AEROCOM and AEROSAT AAOD and SSA study – Part 1: Evaluation and intercomparison of satellite measurements N. Schutgens et al. 10.5194/acp-21-6895-2021
- Assessment of smoke plume height products derived from multisource satellite observations using lidar-derived height metrics for wildfires in the western US J. Huang et al. 10.5194/acp-24-3673-2024
- Aerosol Evolution and Influencing Factor Analysis during Haze Periods in the Guanzhong Area of China Based on Multi-Source Data Y. Zhong et al. 10.3390/atmos13121975
- Assessment of the Representativeness of MODIS Aerosol Optical Depth Products at Different Temporal Scales Using Global AERONET Measurements Y. Tong et al. 10.3390/rs12142330
- A review and framework for the evaluation of pixel-level uncertainty estimates in satellite aerosol remote sensing A. Sayer et al. 10.5194/amt-13-373-2020
- Spatio-Temporal Variability of Aerosol Optical Depth, Total Ozone and NO2 Over East Asia: Strategy for the Validation to the GEMS Scientific Products S. Park et al. 10.3390/rs12142256
- Automated Low-Cost LED-Based Sun Photometer for City Scale Distributed Measurements C. Garrido et al. 10.3390/rs13224585
- Validation of SOAR VIIRS Over‐Water Aerosol Retrievals and Context Within the Global Satellite Aerosol Data Record A. Sayer et al. 10.1029/2018JD029465
- How Long Is Too Long? Variogram Analysis of AERONET Data to Aid Aerosol Validation and Intercomparison Studies A. Sayer 10.1029/2020EA001290
- Effective uncertainty quantification for multi-angle polarimetric aerosol remote sensing over ocean M. Gao et al. 10.5194/amt-15-4859-2022
- Deep-learning-based post-process correction of the aerosol parameters in the high-resolution Sentinel-3 Level-2 Synergy product A. Lipponen et al. 10.5194/amt-15-895-2022
- Validation, Stability, and Consistency of MODIS Collection 6.1 and VIIRS Version 1 Deep Blue Aerosol Data Over Land A. Sayer et al. 10.1029/2018JD029598
- An AeroCom–AeroSat study: intercomparison of satellite AOD datasets for aerosol model evaluation N. Schutgens et al. 10.5194/acp-20-12431-2020
- Validation and inter-comparison of MODIS and VIIRS aerosol optical depth products against data from multiple observation networks over East China Y. Su et al. 10.1016/j.atmosenv.2021.118205
- Comparison and evaluation of multiple satellite aerosol products over China in different scenarios under a unified criterion: Preparation for consistent and high-quality dataset construction H. Zhu et al. 10.1016/j.atmosres.2022.106374
- Investigating multiple aerosol optical depth products from MODIS and VIIRS over Asia: Evaluation, comparison, and merging Y. Wang et al. 10.1016/j.atmosenv.2020.117548
- Understanding MODIS dark-target collection 5 and 6 aerosol data over China: Effect of surface type, aerosol loading and aerosol absorption L. Mei et al. 10.1016/j.atmosres.2019.05.023
- Combining CALIPSO and AERONET Data to Classify Aerosols Globally Y. Lin et al. 10.1109/TGRS.2021.3138085
- The impact and estimation of uncertainty correlation for multi-angle polarimetric remote sensing of aerosols and ocean color M. Gao et al. 10.5194/amt-16-2067-2023
- Site representativity of AERONET and GAW remotely sensed aerosol optical thickness and absorbing aerosol optical thickness observations N. Schutgens 10.5194/acp-20-7473-2020
- Window-Based Filtering Aerosol Retrieval Algorithm of Fine-Scale Remote Sensing Images: A Case Using Sentinel-2 Data in Beijing Region J. Zhou et al. 10.3390/rs15082172
Latest update: 04 Oct 2024
Short summary
We study the collocation mismatch uncertainty related to validating coarse-resolution satellite-based aerosol data against point-like ground based measurements. We use the spatial variability in the satellite data to estimate the upper limit for the uncertainty and study the effect of sampling parameters in the validation. We find that accounting for the collocation mismatch uncertainty increases the fraction of consistent data in the validation.
We study the collocation mismatch uncertainty related to validating coarse-resolution...