Articles | Volume 12, issue 1
https://doi.org/10.5194/amt-12-129-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-12-129-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of version 3.0B of the BEHR OMI NO2 product
Joshua L. Laughner
Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
Qindan Zhu
Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
Viewed
Total article views: 3,234 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 10 Aug 2018)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,342 | 809 | 83 | 3,234 | 379 | 95 | 100 |
- HTML: 2,342
- PDF: 809
- XML: 83
- Total: 3,234
- Supplement: 379
- BibTeX: 95
- EndNote: 100
Total article views: 2,535 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 10 Jan 2019)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,944 | 516 | 75 | 2,535 | 219 | 78 | 87 |
- HTML: 1,944
- PDF: 516
- XML: 75
- Total: 2,535
- Supplement: 219
- BibTeX: 78
- EndNote: 87
Total article views: 699 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 10 Aug 2018)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
398 | 293 | 8 | 699 | 160 | 17 | 13 |
- HTML: 398
- PDF: 293
- XML: 8
- Total: 699
- Supplement: 160
- BibTeX: 17
- EndNote: 13
Viewed (geographical distribution)
Total article views: 3,234 (including HTML, PDF, and XML)
Thereof 3,176 with geography defined
and 58 with unknown origin.
Total article views: 2,535 (including HTML, PDF, and XML)
Thereof 2,495 with geography defined
and 40 with unknown origin.
Total article views: 699 (including HTML, PDF, and XML)
Thereof 681 with geography defined
and 18 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
24 citations as recorded by crossref.
- A top-down assessment using OMI NO<sub>2</sub> suggests an underestimate in the NO<sub><i>x</i></sub> emissions inventory in Seoul, South Korea, during KORUS-AQ D. Goldberg et al. 10.5194/acp-19-1801-2019
- Laboratory measurements of stomatal NO<sub>2</sub> deposition to native California trees and the role of forests in the NO<sub>x</sub> cycle E. Delaria et al. 10.5194/acp-20-14023-2020
- Global Formaldehyde Products From the Ozone Mapping and Profiler Suite (OMPS) Nadir Mappers on Suomi NPP and NOAA‐20 C. Nowlan et al. 10.1029/2022EA002643
- Characterization of errors in satellite-based HCHO ∕ NO2 tropospheric column ratios with respect to chemistry, column-to-PBL translation, spatial representation, and retrieval uncertainties A. Souri et al. 10.5194/acp-23-1963-2023
- Validation of tropospheric NO<sub>2</sub> column measurements of GOME-2A and OMI using MAX-DOAS and direct sun network observations G. Pinardi et al. 10.5194/amt-13-6141-2020
- Evaluating the impact of spatial resolution on tropospheric NO<sub>2</sub> column comparisons within urban areas using high-resolution airborne data L. Judd et al. 10.5194/amt-12-6091-2019
- Satellite remote-sensing capability to assess tropospheric-column ratios of formaldehyde and nitrogen dioxide: case study during the Long Island Sound Tropospheric Ozone Study 2018 (LISTOS 2018) field campaign M. Johnson et al. 10.5194/amt-16-2431-2023
- Nitrogen oxides in the free troposphere: implications for tropospheric oxidants and the interpretation of satellite NO2 measurements V. Shah et al. 10.5194/acp-23-1227-2023
- Exploiting OMI NO2 satellite observations to infer fossil-fuel CO2 emissions from U.S. megacities D. Goldberg et al. 10.1016/j.scitotenv.2019.133805
- Evaluating current satellite capability to observe diurnal change in nitrogen oxides in preparation for geostationary satellite missions E. Penn & T. Holloway 10.1088/1748-9326/ab6b36
- Ozone Monitoring Instrument (OMI) Aura nitrogen dioxide standard product version 4.0 with improved surface and cloud treatments L. Lamsal et al. 10.5194/amt-14-455-2021
- Combining Machine Learning and Satellite Observations to Predict Spatial and Temporal Variation of near Surface OH in North American Cities Q. Zhu et al. 10.1021/acs.est.1c05636
- Disentangling the Impact of the COVID‐19 Lockdowns on Urban NO2 From Natural Variability D. Goldberg et al. 10.1029/2020GL089269
- Comparing Sentinel-5P TROPOMI NO2 column observations with the CAMS regional air quality ensemble J. Douros et al. 10.5194/gmd-16-509-2023
- Estimates of the spatially complete, observational-data-driven planetary boundary layer height over the contiguous United States Z. Ayazpour et al. 10.5194/amt-16-563-2023
- Interpreting summertime hourly variation of NO2 columns with implications for geostationary satellite applications D. Chatterjee et al. 10.5194/acp-24-12687-2024
- Direct observation of changing NO x lifetime in North American cities J. Laughner & R. Cohen 10.1126/science.aax6832
- Background nitrogen dioxide (NO2) over the United States and its implications for satellite observations and trends: effects of nitrate photolysis, aircraft, and open fires R. Dang et al. 10.5194/acp-23-6271-2023
- Lightning NO<sub>2</sub> simulation over the contiguous US and its effects on satellite NO<sub>2</sub> retrievals Q. Zhu et al. 10.5194/acp-19-13067-2019
- Assessment of NO<sub>2</sub> observations during DISCOVER-AQ and KORUS-AQ field campaigns S. Choi et al. 10.5194/amt-13-2523-2020
- Observing U.S. Regional Variability in Lightning NO2 Production Rates J. Lapierre et al. 10.1029/2019JD031362
- Estimates of lightning NO<sub><i>x</i></sub> production based on high-resolution OMI NO<sub>2</sub> retrievals over the continental US X. Zhang et al. 10.5194/amt-13-1709-2020
- TROPOMI NO2 in the United States: A Detailed Look at the Annual Averages, Weekly Cycles, Effects of Temperature, and Correlation With Surface NO2 Concentrations D. Goldberg et al. 10.1029/2020EF001665
- The Berkeley High Resolution Tropospheric NO<sub>2</sub> product J. Laughner et al. 10.5194/essd-10-2069-2018
23 citations as recorded by crossref.
- A top-down assessment using OMI NO<sub>2</sub> suggests an underestimate in the NO<sub><i>x</i></sub> emissions inventory in Seoul, South Korea, during KORUS-AQ D. Goldberg et al. 10.5194/acp-19-1801-2019
- Laboratory measurements of stomatal NO<sub>2</sub> deposition to native California trees and the role of forests in the NO<sub>x</sub> cycle E. Delaria et al. 10.5194/acp-20-14023-2020
- Global Formaldehyde Products From the Ozone Mapping and Profiler Suite (OMPS) Nadir Mappers on Suomi NPP and NOAA‐20 C. Nowlan et al. 10.1029/2022EA002643
- Characterization of errors in satellite-based HCHO ∕ NO2 tropospheric column ratios with respect to chemistry, column-to-PBL translation, spatial representation, and retrieval uncertainties A. Souri et al. 10.5194/acp-23-1963-2023
- Validation of tropospheric NO<sub>2</sub> column measurements of GOME-2A and OMI using MAX-DOAS and direct sun network observations G. Pinardi et al. 10.5194/amt-13-6141-2020
- Evaluating the impact of spatial resolution on tropospheric NO<sub>2</sub> column comparisons within urban areas using high-resolution airborne data L. Judd et al. 10.5194/amt-12-6091-2019
- Satellite remote-sensing capability to assess tropospheric-column ratios of formaldehyde and nitrogen dioxide: case study during the Long Island Sound Tropospheric Ozone Study 2018 (LISTOS 2018) field campaign M. Johnson et al. 10.5194/amt-16-2431-2023
- Nitrogen oxides in the free troposphere: implications for tropospheric oxidants and the interpretation of satellite NO2 measurements V. Shah et al. 10.5194/acp-23-1227-2023
- Exploiting OMI NO2 satellite observations to infer fossil-fuel CO2 emissions from U.S. megacities D. Goldberg et al. 10.1016/j.scitotenv.2019.133805
- Evaluating current satellite capability to observe diurnal change in nitrogen oxides in preparation for geostationary satellite missions E. Penn & T. Holloway 10.1088/1748-9326/ab6b36
- Ozone Monitoring Instrument (OMI) Aura nitrogen dioxide standard product version 4.0 with improved surface and cloud treatments L. Lamsal et al. 10.5194/amt-14-455-2021
- Combining Machine Learning and Satellite Observations to Predict Spatial and Temporal Variation of near Surface OH in North American Cities Q. Zhu et al. 10.1021/acs.est.1c05636
- Disentangling the Impact of the COVID‐19 Lockdowns on Urban NO2 From Natural Variability D. Goldberg et al. 10.1029/2020GL089269
- Comparing Sentinel-5P TROPOMI NO2 column observations with the CAMS regional air quality ensemble J. Douros et al. 10.5194/gmd-16-509-2023
- Estimates of the spatially complete, observational-data-driven planetary boundary layer height over the contiguous United States Z. Ayazpour et al. 10.5194/amt-16-563-2023
- Interpreting summertime hourly variation of NO2 columns with implications for geostationary satellite applications D. Chatterjee et al. 10.5194/acp-24-12687-2024
- Direct observation of changing NO x lifetime in North American cities J. Laughner & R. Cohen 10.1126/science.aax6832
- Background nitrogen dioxide (NO2) over the United States and its implications for satellite observations and trends: effects of nitrate photolysis, aircraft, and open fires R. Dang et al. 10.5194/acp-23-6271-2023
- Lightning NO<sub>2</sub> simulation over the contiguous US and its effects on satellite NO<sub>2</sub> retrievals Q. Zhu et al. 10.5194/acp-19-13067-2019
- Assessment of NO<sub>2</sub> observations during DISCOVER-AQ and KORUS-AQ field campaigns S. Choi et al. 10.5194/amt-13-2523-2020
- Observing U.S. Regional Variability in Lightning NO2 Production Rates J. Lapierre et al. 10.1029/2019JD031362
- Estimates of lightning NO<sub><i>x</i></sub> production based on high-resolution OMI NO<sub>2</sub> retrievals over the continental US X. Zhang et al. 10.5194/amt-13-1709-2020
- TROPOMI NO2 in the United States: A Detailed Look at the Annual Averages, Weekly Cycles, Effects of Temperature, and Correlation With Surface NO2 Concentrations D. Goldberg et al. 10.1029/2020EF001665
1 citations as recorded by crossref.
Latest update: 02 Jan 2025
Short summary
We compared v3.0B of the BEHR satellite NO2 product against independent measurements to verify its accuracy. We found that the BEHR product generally performs better than standard NO2 products and the previous version of BEHR. Outside of the SE US, using daily NO2 profiles results in similar or better agreement with independent measurements than using monthly profiles, and direct evaluation of those profiles shows they better describe NO2 distribution in urban areas than monthly profiles.
We compared v3.0B of the BEHR satellite NO2 product against independent measurements to verify...