Articles | Volume 12, issue 4
https://doi.org/10.5194/amt-12-2331-2019
https://doi.org/10.5194/amt-12-2331-2019
Research article
 | 
15 Apr 2019
Research article |  | 15 Apr 2019

Characterization and evaluation of AIRS-based estimates of the deuterium content of water vapor

John R. Worden, Susan S. Kulawik, Dejian Fu, Vivienne H. Payne, Alan E. Lipton, Igor Polonsky, Yuguang He, Karen Cady-Pereira, Jean-Luc Moncet, Robert L. Herman, Fredrick W. Irion, and Kevin W. Bowman

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by John Worden on behalf of the Authors (03 Mar 2019)  Author's response   Manuscript 
ED: Publish as is (07 Mar 2019) by Lars Hoffmann
AR by John Worden on behalf of the Authors (15 Mar 2019)  Manuscript 
Download
Short summary
In this paper we take the first steps towards generating a multi-decadal record of the deuterium content of water vapor, useful for evaluating the moisture sources and processes affecting water vapor, by estimating the deuterium content from thermal IR radiances from the AIRS instrument. We find the AIRS-based measurements are sensitive to the deuterium content of water vapor in the middle and lower troposphere with a single measurement uncertainty of ~ 3 % and an accuracy of ~ 0.7 %.