Articles | Volume 12, issue 4
https://doi.org/10.5194/amt-12-2579-2019
https://doi.org/10.5194/amt-12-2579-2019
Research article
 | 
02 May 2019
Research article |  | 02 May 2019

Potential improvements in global carbon flux estimates from a network of laser heterodyne radiometer measurements of column carbon dioxide

Paul I. Palmer, Emily L. Wilson, Geronimo L. Villanueva, Giuliano Liuzzi, Liang Feng, Anthony J. DiGregorio, Jianping Mao, Lesley Ott, and Bryan Duncan

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Paul Palmer on behalf of the Authors (22 Mar 2019)  Author's response   Manuscript 
ED: Publish subject to minor revisions (review by editor) (25 Mar 2019) by John Worden
AR by Paul Palmer on behalf of the Authors (25 Mar 2019)  Author's response   Manuscript 
ED: Publish as is (06 Apr 2019) by John Worden
AR by Paul Palmer on behalf of the Authors (11 Apr 2019)
Download
Short summary
We describe the potential impact of a new, low-cost, portable ground instrument (the mini-LHR) that measures methane and carbon dioxide in the atmospheric column. This region is key in quantifying the global carbon budget but has geographical gaps in measurements left by ground-based networks and space-based observations. A deployment of 50 mini-LHRs would add new data products in the Amazon, the Arctic, and southern Asia and significantly improve knowledge of regional and global carbon budgets.