Articles | Volume 12, issue 6
https://doi.org/10.5194/amt-12-3463-2019
https://doi.org/10.5194/amt-12-3463-2019
Research article
 | 
28 Jun 2019
Research article |  | 28 Jun 2019

Automated wind turbine wake characterization in complex terrain

Rebecca J. Barthelmie and Sara C. Pryor

Related authors

Hurricane impacts in the United States East Coast offshore wind energy lease areas
Kelsey B. Thompson, Rebecca J. Barthelmie, and Sara C. Pryor
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-37,https://doi.org/10.5194/wes-2025-37, 2025
Revised manuscript under review for WES
Short summary
How well are hazards associated with derechos reproduced in regional climate simulations?
Tristan Shepherd, Frederick Letson, Rebecca J. Barthelmie, and Sara C. Pryor
Nat. Hazards Earth Syst. Sci., 24, 4473–4505, https://doi.org/10.5194/nhess-24-4473-2024,https://doi.org/10.5194/nhess-24-4473-2024, 2024
Short summary
Machine learning methods to improve spatial predictions of coastal wind speed profiles and low-level jets using single-level ERA5 data
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Ville Vakkari, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 9, 821–840, https://doi.org/10.5194/wes-9-821-2024,https://doi.org/10.5194/wes-9-821-2024, 2024
Short summary
Quantitative comparison of power production and power quality onshore and offshore: a case study from the eastern United States
Rebecca Foody, Jacob Coburn, Jeanie A. Aird, Rebecca J. Barthelmie, and Sara C. Pryor
Wind Energ. Sci., 9, 263–280, https://doi.org/10.5194/wes-9-263-2024,https://doi.org/10.5194/wes-9-263-2024, 2024
Short summary
Brief communication: On the definition of the low-level jet
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 8, 1651–1658, https://doi.org/10.5194/wes-8-1651-2023,https://doi.org/10.5194/wes-8-1651-2023, 2023
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Combining commercial microwave links and weather radar for classification of dry snow and rainfall
Erlend Øydvin, Renaud Gaban, Jafet Andersson, Remco (C. Z.) van de Beek, Mareile Astrid Wolff, Nils-Otto Kitterød, Christian Chwala, and Vegard Nilsen
Atmos. Meas. Tech., 18, 2279–2293, https://doi.org/10.5194/amt-18-2279-2025,https://doi.org/10.5194/amt-18-2279-2025, 2025
Short summary
Improved consistency in solar-induced fluorescence retrievals from GOME-2A with the SIFTER v3 algorithm
Juliëtte C. S. Anema, K. Folkert Boersma, Lieuwe G. Tilstra, Olaf N. E. Tuinder, and Willem W. Verstraeten
Atmos. Meas. Tech., 18, 1961–1979, https://doi.org/10.5194/amt-18-1961-2025,https://doi.org/10.5194/amt-18-1961-2025, 2025
Short summary
An information content approach to diagnosing and improving CLIMCAPS retrieval consistency across instruments and satellites
Nadia Smith and Christopher D. Barnet
Atmos. Meas. Tech., 18, 1823–1839, https://doi.org/10.5194/amt-18-1823-2025,https://doi.org/10.5194/amt-18-1823-2025, 2025
Short summary
Characterizing urban planetary boundary layer dynamics using 3-year Doppler wind lidar measurements in a western Yangtze River Delta city, China
Tianwen Wei, Mengya Wang, Kenan Wu, Jinlong Yuan, Haiyun Xia, and Simone Lolli
Atmos. Meas. Tech., 18, 1841–1857, https://doi.org/10.5194/amt-18-1841-2025,https://doi.org/10.5194/amt-18-1841-2025, 2025
Short summary
Radar-based high-resolution ensemble precipitation analyses over the French Alps
Matthieu Vernay, Matthieu Lafaysse, and Clotilde Augros
Atmos. Meas. Tech., 18, 1731–1755, https://doi.org/10.5194/amt-18-1731-2025,https://doi.org/10.5194/amt-18-1731-2025, 2025
Short summary

Cited articles

Abkar, M. and Porte-Agel, F.: Influence of the Coriolis force on the structure and evolution of wind turbine wakes, Phys. Rev. Fluids, 1, 063701, https://doi.org/10.1103/PhysRevFluids.1.063701, 2016. 
Ainslie, J. F.: Calculating the flow field in the wake of wind turbines, J. Wind. Eng. Ind. Aerod., 27, 213–224, 1988. 
Aitken, M. L. and Lundquist, J. K.: Utility-Scale Wind Turbine Wake Characterization Using Nacelle-Based Long-Range Scanning Lidar, J. Atmos. Ocean. Tech., 31, 1529–1539, https://doi.org/10.1175/jtech-d-13-00218.1, 2014. 
Aitken, M. L., Banta, R. M., Pichugina, Y. L., and Lundquist, J. K.: Quantifying Wind Turbine Wake Characteristics from Scanning Remote Sensor Data, J. Atmos. Ocean. Tech., 31, 765–787, https://doi.org/10.1175/jtech-d-13-00104.1, 2014. 
Banta, R. M., Pichugina, Y. L., Brewer, W. A., Lundquist, J. K., Kelley, N. D., Sandberg, S. P., Alvarez, R. J., Hardesty, R. M., and Weickmann, A. M.: 3D Volumetric Analysis of Wind Turbine Wake Properties in the Atmosphere Using High-Resolution Doppler Lidar, J. Atmos. Ocean. Tech., 32, 904–914, https://doi.org/10.1175/jtech-d-14-00078.1, 2015. 
Download
Short summary
Wakes are volumes of air with low wind speed that form downwind of wind turbines. Their properties and behaviour determine optimal turbine spacing in wind farms. We use scanning Doppler lidar to accurately and precisely measure wake characteristics at a complex terrain site in Portugal. We develop and apply an automatic processing algorithm to detect wakes and quantify their characteristics. In higher wind speeds, the wake centres are lower. Wake centres are also lower in convective conditions.
Share