Articles | Volume 12, issue 6
https://doi.org/10.5194/amt-12-3463-2019
https://doi.org/10.5194/amt-12-3463-2019
Research article
 | 
28 Jun 2019
Research article |  | 28 Jun 2019

Automated wind turbine wake characterization in complex terrain

Rebecca J. Barthelmie and Sara C. Pryor

Related authors

How well are hazards associated with derechos reproduced in regional climate simulations?
Tristan Shepherd, Frederick Letson, Rebecca J. Barthelmie, and Sara C. Pryor
Nat. Hazards Earth Syst. Sci., 24, 4473–4505, https://doi.org/10.5194/nhess-24-4473-2024,https://doi.org/10.5194/nhess-24-4473-2024, 2024
Short summary
Machine learning methods to improve spatial predictions of coastal wind speed profiles and low-level jets using single-level ERA5 data
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Ville Vakkari, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 9, 821–840, https://doi.org/10.5194/wes-9-821-2024,https://doi.org/10.5194/wes-9-821-2024, 2024
Short summary
Quantitative comparison of power production and power quality onshore and offshore: a case study from the eastern United States
Rebecca Foody, Jacob Coburn, Jeanie A. Aird, Rebecca J. Barthelmie, and Sara C. Pryor
Wind Energ. Sci., 9, 263–280, https://doi.org/10.5194/wes-9-263-2024,https://doi.org/10.5194/wes-9-263-2024, 2024
Short summary
Brief communication: On the definition of the low-level jet
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 8, 1651–1658, https://doi.org/10.5194/wes-8-1651-2023,https://doi.org/10.5194/wes-8-1651-2023, 2023
Short summary
WRF-simulated low-level jets over Iowa: characterization and sensitivity studies
Jeanie A. Aird, Rebecca J. Barthelmie, Tristan J. Shepherd, and Sara C. Pryor
Wind Energ. Sci., 6, 1015–1030, https://doi.org/10.5194/wes-6-1015-2021,https://doi.org/10.5194/wes-6-1015-2021, 2021
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Improving solution availability and temporal consistency of an optimal-estimation physical retrieval for ground-based thermodynamic boundary layer profiling
Bianca Adler, David D. Turner, Laura Bianco, Irina V. Djalalova, Timothy Myers, and James M. Wilczak
Atmos. Meas. Tech., 17, 6603–6624, https://doi.org/10.5194/amt-17-6603-2024,https://doi.org/10.5194/amt-17-6603-2024, 2024
Short summary
An improved geolocation methodology for spaceborne radar and lidar systems
Bernat Puigdomènech Treserras and Pavlos Kollias
Atmos. Meas. Tech., 17, 6301–6314, https://doi.org/10.5194/amt-17-6301-2024,https://doi.org/10.5194/amt-17-6301-2024, 2024
Short summary
Combining low- and high-frequency microwave radiometer measurements from the MOSAiC expedition for enhanced water vapour products
Andreas Walbröl, Hannes J. Griesche, Mario Mech, Susanne Crewell, and Kerstin Ebell
Atmos. Meas. Tech., 17, 6223–6245, https://doi.org/10.5194/amt-17-6223-2024,https://doi.org/10.5194/amt-17-6223-2024, 2024
Short summary
HAMSTER: Hyperspectral Albedo Maps dataset with high Spatial and TEmporal Resolution
Giulia Roccetti, Luca Bugliaro, Felix Gödde, Claudia Emde, Ulrich Hamann, Mihail Manev, Michael Fritz Sterzik, and Cedric Wehrum
Atmos. Meas. Tech., 17, 6025–6046, https://doi.org/10.5194/amt-17-6025-2024,https://doi.org/10.5194/amt-17-6025-2024, 2024
Short summary
Global-scale gravity wave analysis methodology for the ESA Earth Explorer 11 candidate CAIRT
Sebastian Rhode, Peter Preusse, Jörn Ungermann, Inna Polichtchouk, Kaoru Sato, Shingo Watanabe, Manfred Ern, Karlheinz Nogai, Björn-Martin Sinnhuber, and Martin Riese
Atmos. Meas. Tech., 17, 5785–5819, https://doi.org/10.5194/amt-17-5785-2024,https://doi.org/10.5194/amt-17-5785-2024, 2024
Short summary

Cited articles

Abkar, M. and Porte-Agel, F.: Influence of the Coriolis force on the structure and evolution of wind turbine wakes, Phys. Rev. Fluids, 1, 063701, https://doi.org/10.1103/PhysRevFluids.1.063701, 2016. 
Ainslie, J. F.: Calculating the flow field in the wake of wind turbines, J. Wind. Eng. Ind. Aerod., 27, 213–224, 1988. 
Aitken, M. L. and Lundquist, J. K.: Utility-Scale Wind Turbine Wake Characterization Using Nacelle-Based Long-Range Scanning Lidar, J. Atmos. Ocean. Tech., 31, 1529–1539, https://doi.org/10.1175/jtech-d-13-00218.1, 2014. 
Aitken, M. L., Banta, R. M., Pichugina, Y. L., and Lundquist, J. K.: Quantifying Wind Turbine Wake Characteristics from Scanning Remote Sensor Data, J. Atmos. Ocean. Tech., 31, 765–787, https://doi.org/10.1175/jtech-d-13-00104.1, 2014. 
Banta, R. M., Pichugina, Y. L., Brewer, W. A., Lundquist, J. K., Kelley, N. D., Sandberg, S. P., Alvarez, R. J., Hardesty, R. M., and Weickmann, A. M.: 3D Volumetric Analysis of Wind Turbine Wake Properties in the Atmosphere Using High-Resolution Doppler Lidar, J. Atmos. Ocean. Tech., 32, 904–914, https://doi.org/10.1175/jtech-d-14-00078.1, 2015. 
Download
Short summary
Wakes are volumes of air with low wind speed that form downwind of wind turbines. Their properties and behaviour determine optimal turbine spacing in wind farms. We use scanning Doppler lidar to accurately and precisely measure wake characteristics at a complex terrain site in Portugal. We develop and apply an automatic processing algorithm to detect wakes and quantify their characteristics. In higher wind speeds, the wake centres are lower. Wake centres are also lower in convective conditions.