Articles | Volume 12, issue 7
https://doi.org/10.5194/amt-12-3573-2019
https://doi.org/10.5194/amt-12-3573-2019
Research article
 | 
04 Jul 2019
Research article |  | 04 Jul 2019

A generalized simulation capability for rotating- beam scatterometers

Zhen Li, Ad Stoffelen, and Anton Verhoef

Related authors

Mesoscale modelling of North Sea wind resources with COSMO-CLM: model evaluation and impact assessment of future wind farm characteristics on cluster-scale wake losses
Ruben Borgers, Marieke Dirksen, Ine L. Wijnant, Andrew Stepek, Ad Stoffelen, Naveed Akhtar, Jérôme Neirynck, Jonas Van de Walle, Johan Meyers, and Nicole P. M. van Lipzig
Wind Energ. Sci., 9, 697–719, https://doi.org/10.5194/wes-9-697-2024,https://doi.org/10.5194/wes-9-697-2024, 2024
Short summary
Mesoscale weather systems and associated potential wind power variations in a mid-latitude sea strait (Kattegat)
Jérôme Neirynck, Jonas Van de Walle, Ruben Borgers, Sebastiaan Jamaer, Johan Meyers, Ad Stoffelen, and Nicole P. M. van Lipzig
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-116,https://doi.org/10.5194/wes-2023-116, 2023
Revised manuscript under review for WES
Short summary
Higher-order calibration on WindRAD (Wind Radar) scatterometer winds
Zhen Li, Ad Stoffelen, Anton Verhoef, Zhixiong Wang, Jian Shang, and Honggang Yin
Atmos. Meas. Tech., 16, 4769–4783, https://doi.org/10.5194/amt-16-4769-2023,https://doi.org/10.5194/amt-16-4769-2023, 2023
Short summary
Evaluation of Aeolus L2B wind product with wind profiling radar measurements and numerical weather prediction model equivalents over Australia
Haichen Zuo, Charlotte Bay Hasager, Ioanna Karagali, Ad Stoffelen, Gert-Jan Marseille, and Jos de Kloe
Atmos. Meas. Tech., 15, 4107–4124, https://doi.org/10.5194/amt-15-4107-2022,https://doi.org/10.5194/amt-15-4107-2022, 2022
Short summary
Intercomparison of wind observations from ESA’s satellite mission Aeolus, ERA5 reanalysis and radiosonde over China
Boming Liu, Jianping Guo, Wei Gong, Yong Zhang, Lijuan Shi, Yingying Ma, Jian Li, Xiaoran Guo, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-26,https://doi.org/10.5194/amt-2022-26, 2022
Publication in AMT not foreseen
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Dual adaptive differential threshold method for automated detection of faint and strong echo features in radar observations of winter storms
Laura M. Tomkins, Sandra E. Yuter, and Matthew A. Miller
Atmos. Meas. Tech., 17, 3377–3399, https://doi.org/10.5194/amt-17-3377-2024,https://doi.org/10.5194/amt-17-3377-2024, 2024
Short summary
Noise filtering options for conically scanning Doppler lidar measurements with low pulse accumulation
Eileen Päschke and Carola Detring
Atmos. Meas. Tech., 17, 3187–3217, https://doi.org/10.5194/amt-17-3187-2024,https://doi.org/10.5194/amt-17-3187-2024, 2024
Short summary
Measuring rainfall using microwave links: the influence of temporal sampling
Luuk D. van der Valk, Miriam Coenders-Gerrits, Rolf W. Hut, Aart Overeem, Bas Walraven, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 2811–2832, https://doi.org/10.5194/amt-17-2811-2024,https://doi.org/10.5194/amt-17-2811-2024, 2024
Short summary
Drone-based photogrammetry combined with deep learning to estimate hail size distributions and melting of hail on the ground
Martin Lainer, Killian P. Brennan, Alessandro Hering, Jérôme Kopp, Samuel Monhart, Daniel Wolfensberger, and Urs Germann
Atmos. Meas. Tech., 17, 2539–2557, https://doi.org/10.5194/amt-17-2539-2024,https://doi.org/10.5194/amt-17-2539-2024, 2024
Short summary
The High lAtitude sNowfall Detection and Estimation aLgorithm for ATMS (HANDEL-ATMS): a new algorithm for snowfall retrieval at high latitudes
Andrea Camplani, Daniele Casella, Paolo Sanò, and Giulia Panegrossi
Atmos. Meas. Tech., 17, 2195–2217, https://doi.org/10.5194/amt-17-2195-2024,https://doi.org/10.5194/amt-17-2195-2024, 2024
Short summary

Cited articles

Bajo, M., De Biasio, F., Umgiesser, G., Vignudelli, S., and Zecchetto, S.: Impact of using scatterometer and altimeter data on storm surge forecasting, Ocean Model., 113, 85–94, https://doi.org/10.1016/j.ocemod.2017.03.014, 2017. 
Chi, C. Y. and Li, F. K.: A comparative study of several wind estimation algorithms for spaceborne scatterometers, IEEE T. Geosci. Remote, 26, 115–121, https://doi.org/10.1109/36.3011, 1988. 
de Vries, J., Stoffelen, A., and Beysens, J.: Ambiguity Removal and Product Monitoring for SeaWinds, de Bilt, the Netherlands, available at: http://www.knmi.nl/scatterometer/publications/ (last access: 2 July 2019), 2005. 
Dou, F., Yin, H., and Gu, S.: Simulation of wind performance in tropical cyclone for China's future dual-frequency wind field radar, Proc. SPIE, 9264, 92641G1–92641G7, 2014. 
Dunbar, R. S., Hsiao, S. V., Kim, Y., Pak, K. S., Weiss, B. H., and Zhang, A.: Science Algorithm Specification, Jet Propulsion Laboratory, Pasadena, California, 2001. 
Download
Short summary
This paper presents a generic simulation rotating-beam scatterometer scheme, which includes pencil-beam and fan-beam instruments. SCAT (CFOSAT), WindRAD, and SeaWinds are chosen to represent the current or near-future rotating-beam scatterometers. Their capacity for wind retrieval and figures of merit are analyzed and compared with each other. Increasing the number of views is able to improve the wind retrieval, but the improvement also can reach saturation with even more views.