Articles | Volume 12, issue 9
Atmos. Meas. Tech., 12, 4993–5018, 2019
https://doi.org/10.5194/amt-12-4993-2019
Atmos. Meas. Tech., 12, 4993–5018, 2019
https://doi.org/10.5194/amt-12-4993-2019

Research article 17 Sep 2019

Research article | 17 Sep 2019

The importance of particle size distribution and internal structure for triple-frequency radar retrievals of the morphology of snow

Shannon L. Mason et al.

Data sets

Marine W-Band (95 GHz) ARM Cloud Radar (MWACR), 01-02-2014 to 31-03-2014, ARM Mobile Facility (TMP) U. of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 (M1) Atmospheric Radiation Measurement (ARM) https://doi.org/10.5439/1150242

Ka-Band Scanning ARM Cloud Radar (KASACRVPT), 01-02-2014 to 31-03-2014, ARM Mobile Facility (TMP) U. of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 (M1) Atmospheric Radiation Measurement (ARM) https://doi.org/10.5439/1046201

X-Band Scanning ARM Cloud Radar (XSACRVPT), 01-02-2014 to 31-03-2014, ARM Mobile Facility (TMP) U. of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 (M1) Atmospheric Radiation Measurement (ARM) https://doi.org/10.5439/1150303

Download
Short summary
The mass contents of snowflakes are critical to remotely sensed estimates of snowfall. The signatures of snow measured at three radar frequencies can distinguish fluffy, fractal snowflakes from dense and more homogeneous rimed snow. However, we show that the shape of the particle size spectrum also has a significant impact on triple-frequency radar signatures and must be accounted for when making triple-frequency radar estimates of snow that include variations in particle structure and density.