Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 12, issue 9
Atmos. Meas. Tech., 12, 4993–5018, 2019
https://doi.org/10.5194/amt-12-4993-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 12, 4993–5018, 2019
https://doi.org/10.5194/amt-12-4993-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 17 Sep 2019

Research article | 17 Sep 2019

The importance of particle size distribution and internal structure for triple-frequency radar retrievals of the morphology of snow

Shannon L. Mason et al.

Related authors

Improved rain rate and drop size retrievals from airborne Doppler radar
Shannon L. Mason, J. Christine Chiu, Robin J. Hogan, and Lin Tian
Atmos. Chem. Phys., 17, 11567–11589, https://doi.org/10.5194/acp-17-11567-2017,https://doi.org/10.5194/acp-17-11567-2017, 2017
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
A new Orbiting Carbon Observatory 2 cloud flagging method and rapid retrieval of marine boundary layer cloud properties
Mark Richardson, Matthew D. Lebsock, James McDuffie, and Graeme L. Stephens
Atmos. Meas. Tech., 13, 4947–4961, https://doi.org/10.5194/amt-13-4947-2020,https://doi.org/10.5194/amt-13-4947-2020, 2020
Short summary
CALIOP V4 cloud thermodynamic phase assignment and the impact of near-nadir viewing angles
Melody A. Avery, Robert A. Ryan, Brian J. Getzewich, Mark A. Vaughan, David M. Winker, Yongxiang Hu, Anne Garnier, Jacques Pelon, and Carolus A. Verhappen
Atmos. Meas. Tech., 13, 4539–4563, https://doi.org/10.5194/amt-13-4539-2020,https://doi.org/10.5194/amt-13-4539-2020, 2020
Short summary
Detection of the cloud liquid water path horizontal inhomogeneity in a coastline area by means of ground-based microwave observations: feasibility study
Vladimir S. Kostsov, Dmitry V. Ionov, and Anke Kniffka
Atmos. Meas. Tech., 13, 4565–4587, https://doi.org/10.5194/amt-13-4565-2020,https://doi.org/10.5194/amt-13-4565-2020, 2020
Short summary
Synergistic radar and radiometer retrievals of ice hydrometeors
Simon Pfreundschuh, Patrick Eriksson, Stefan A. Buehler, Manfred Brath, David Duncan, Richard Larsson, and Robin Ekelund
Atmos. Meas. Tech., 13, 4219–4245, https://doi.org/10.5194/amt-13-4219-2020,https://doi.org/10.5194/amt-13-4219-2020, 2020
Short summary
Improvement in cloud retrievals from VIIRS through the use of infrared absorption channels constructed from VIIRS+CrIS data fusion
Yue Li, Bryan A. Baum, Andrew K. Heidinger, W. Paul Menzel, and Elisabeth Weisz
Atmos. Meas. Tech., 13, 4035–4049, https://doi.org/10.5194/amt-13-4035-2020,https://doi.org/10.5194/amt-13-4035-2020, 2020
Short summary

Cited articles

Atmospheric Radiation Measurement (ARM) user facility: updated hourly, Marine W-Band (95 GHz) ARM Cloud Radar (MWACR), 01-02-2014 to 31-03-2014, ARM Mobile Facility (TMP) U. of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 (M1), compiled by: Johnson, K., Giangrande, S., Bharadwaj, N.,, Lindenmaier, I., Isom, B., Hardin, J., and Matthews, A., ARM Data Center, https://doi.org/10.5439/1150242, 2017. 
Atmospheric Radiation Measurement (ARM) user facility: updated hourly, Ka-Band Scanning ARM Cloud Radar (KASACRVPT), 01-02-2014 to 31-03-2014, ARM Mobile Facility (TMP) U. of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 (M1), compiled by: Johnson, K., Giangrande, S., Bharadwaj, N., Lindenmaier, I., Nelson, D., Isom, B., Hardin, J., and Matthews, A., ARM Data Center, https://doi.org/10.5439/1046201, 2019a. 
Atmospheric Radiation Measurement (ARM) user facility: updated hourly, X-Band Scanning ARM Cloud Radar (XSACRVPT), 01-02-2014 to 31-03-2014, ARM Mobile Facility (TMP) U. of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 (M1), compiled by: Johnson, K., Giangrande, S., Bharadwaj, N., Lindenmaier, I., Nelson, D., Isom, B., Hardin, J., and Matthews, A., ARM Data Center, https://doi.org/10.5439/1150303, 2019b. 
Barrett, A. I., Westbrook, C. D., Nicol, J. C., and Stein, T. H. M.: Rapid ice aggregation process revealed through triple-wavelength Doppler spectrum radar analysis, Atmos. Chem. Phys., 19, 5753–5769, https://doi.org/10.5194/acp-19-5753-2019, 2019. a
Battaglia, A. and Delanoë, J.: Synergies and complementarities of CloudSat-CALIPSO snow observations, J. Geophys. Res.-Atmos., 118, 721–731, https://doi.org/10.1029/2012JD018092, 2013. a
Publications Copernicus
Download
Short summary
The mass contents of snowflakes are critical to remotely sensed estimates of snowfall. The signatures of snow measured at three radar frequencies can distinguish fluffy, fractal snowflakes from dense and more homogeneous rimed snow. However, we show that the shape of the particle size spectrum also has a significant impact on triple-frequency radar signatures and must be accounted for when making triple-frequency radar estimates of snow that include variations in particle structure and density.
The mass contents of snowflakes are critical to remotely sensed estimates of snowfall. The...
Citation