Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 12, issue 12
Atmos. Meas. Tech., 12, 6619–6634, 2019
https://doi.org/10.5194/amt-12-6619-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: TROPOMI on Sentinel-5 Precursor: first year in operation (AMT/ACP...

Atmos. Meas. Tech., 12, 6619–6634, 2019
https://doi.org/10.5194/amt-12-6619-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 13 Dec 2019

Research article | 13 Dec 2019

A neural network radiative transfer model approach applied to the Tropospheric Monitoring Instrument aerosol height algorithm

Swadhin Nanda et al.

Viewed

Total article views: 1,626 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,094 519 13 1,626 18 17
  • HTML: 1,094
  • PDF: 519
  • XML: 13
  • Total: 1,626
  • BibTeX: 18
  • EndNote: 17
Views and downloads (calculated since 08 May 2019)
Cumulative views and downloads (calculated since 08 May 2019)

Viewed (geographical distribution)

Total article views: 1,319 (including HTML, PDF, and XML) Thereof 1,298 with geography defined and 21 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 18 Sep 2020
Publications Copernicus
Short summary
This paper discusses a neural network forward model used by the operational aerosol layer height (ALH) retrieval algorithm for the TROPOspheric Monitoring Instrument (TROPOMI) on board the European Sentinel-5 Precursor satellite mission. This model replaces online radiative transfer calculations within the oxygen A-band, improving the speed of the algorithm by 3 orders of magnitude. With this advancement in the algorithm's speed, TROPOMI is set to deliver the ALH product operationally.
This paper discusses a neural network forward model used by the operational aerosol layer height...
Citation