Articles | Volume 13, issue 2
https://doi.org/10.5194/amt-13-1019-2020
https://doi.org/10.5194/amt-13-1019-2020
Research article
 | 
03 Mar 2020
Research article |  | 03 Mar 2020

Atmospheric condition identification in multivariate data through a metric for total variation

Nicholas Hamilton

Viewed

Total article views: 2,153 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,426 662 65 2,153 69 64
  • HTML: 1,426
  • PDF: 662
  • XML: 65
  • Total: 2,153
  • BibTeX: 69
  • EndNote: 64
Views and downloads (calculated since 11 Sep 2019)
Cumulative views and downloads (calculated since 11 Sep 2019)

Viewed (geographical distribution)

Total article views: 2,153 (including HTML, PDF, and XML) Thereof 2,034 with geography defined and 119 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 14 Dec 2024
Download
Short summary
The identification of atmospheric conditions within a multivariable atmospheric data set is an important step in validating emerging and existing models used to simulate wind plant flows and operational strategies. The total variation approach developed here offers a method founded in tested mathematical metrics and can be used to identify and characterize periods corresponding to quiescent conditions or specific events of interest for study or wind energy development.