Articles | Volume 13, issue 3
Atmos. Meas. Tech., 13, 1129–1155, 2020
https://doi.org/10.5194/amt-13-1129-2020
Atmos. Meas. Tech., 13, 1129–1155, 2020
https://doi.org/10.5194/amt-13-1129-2020

Research article 09 Mar 2020

Research article | 09 Mar 2020

Validation of MAX-DOAS retrievals of aerosol extinction, SO2, and NO2 through comparison with lidar, sun photometer, active DOAS, and aircraft measurements in the Athabasca oil sands region

Zoë Y. W. Davis et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Robert McLaren on behalf of the Authors (30 Dec 2019)  Author's response    Manuscript
ED: Publish as is (28 Jan 2020) by Robyn Schofield
Download
Short summary
Here, we evaluate a ground-based remote sensing method (MAX-DOAS) for measuring total pollutant loading and vertical profiles of pollution in the lower atmosphere by comparing our method to a variety of other measurement methods (lidar, sunphotometer, active DOAS, and aircraft measurements). Measurements were made in the Athabasca Oil Sands Region in Alberta, Canada. The complex dataset provided a rare opportunity to evaluate the performance of MAX-DOAS under varying atmospheric conditions.