Articles | Volume 13, issue 3
https://doi.org/10.5194/amt-13-1129-2020
https://doi.org/10.5194/amt-13-1129-2020
Research article
 | 
09 Mar 2020
Research article |  | 09 Mar 2020

Validation of MAX-DOAS retrievals of aerosol extinction, SO2, and NO2 through comparison with lidar, sun photometer, active DOAS, and aircraft measurements in the Athabasca oil sands region

Zoë Y. W. Davis, Udo Frieß, Kevin B. Strawbridge, Monika Aggarwaal, Sabour Baray, Elijah G. Schnitzler, Akshay Lobo, Vitali E. Fioletov, Ihab Abboud, Chris A. McLinden, Jim Whiteway, Megan D. Willis, Alex K. Y. Lee, Jeff Brook, Jason Olfert, Jason O'Brien, Ralf Staebler, Hans D. Osthoff, Cristian Mihele, and Robert McLaren

Related authors

Recommendations for spectral fitting of SO2 from miniature multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements
Zoë Y. W. Davis and Robert McLaren
Atmos. Meas. Tech., 13, 3993–4008, https://doi.org/10.5194/amt-13-3993-2020,https://doi.org/10.5194/amt-13-3993-2020, 2020
Short summary
Estimation of NOx and SO2 emissions from Sarnia, Ontario, using a mobile MAX-DOAS (Multi-AXis Differential Optical Absorption Spectroscopy) and a NOx analyzer
Zoe Y. W. Davis, Sabour Baray, Chris A. McLinden, Aida Khanbabakhani, William Fujs, Csilla Csukat, Jerzy Debosz, and Robert McLaren
Atmos. Chem. Phys., 19, 13871–13889, https://doi.org/10.5194/acp-19-13871-2019,https://doi.org/10.5194/acp-19-13871-2019, 2019
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Validation of the version 4.5 MAESTRO ozone and NO2 measurements
Paul S. Jeffery, James R. Drummond, C. Thomas McElroy, Kaley A. Walker, and Jiansheng Zou
Atmos. Meas. Tech., 18, 569–602, https://doi.org/10.5194/amt-18-569-2025,https://doi.org/10.5194/amt-18-569-2025, 2025
Short summary
Benchmarking data-driven inversion methods for the estimation of local CO2 emissions from synthetic satellite images of XCO2 and NO2
Diego Santaren, Janne Hakkarainen, Gerrit Kuhlmann, Erik Koene, Frédéric Chevallier, Iolanda Ialongo, Hannakaisa Lindqvist, Janne Nurmela, Johanna Tamminen, Laia Amorós, Dominik Brunner, and Grégoire Broquet
Atmos. Meas. Tech., 18, 211–239, https://doi.org/10.5194/amt-18-211-2025,https://doi.org/10.5194/amt-18-211-2025, 2025
Short summary
Validation of 12 years (2008–2019) of IASI-A CO with IAGOS aircraft observations
Brice Barret, Pierre Loicq, Eric Le Flochmoën, Yasmine Bennouna, Juliette Hadji-Lazaro, Daniel Hurtmans, and Bastien Sauvage
Atmos. Meas. Tech., 18, 129–149, https://doi.org/10.5194/amt-18-129-2025,https://doi.org/10.5194/amt-18-129-2025, 2025
Short summary
Diurnal variations of NO2 tropospheric vertical column density over the Seoul metropolitan area from the Geostationary Environment Monitoring Spectrometer (GEMS): seasonal differences and the influence of the a priori NO2 profile
Seunghwan Seo, Si-Wan Kim, Kyoung-Min Kim, Andreas Richter, Kezia Lange, John P. Burrows, Junsung Park, Hyunkee Hong, Hanlim Lee, Ukkyo Jeong, Jung-Hun Woo, and Jhoon Kim
Atmos. Meas. Tech., 18, 115–128, https://doi.org/10.5194/amt-18-115-2025,https://doi.org/10.5194/amt-18-115-2025, 2025
Short summary
Validation of ACE-FTS version 5.2 ozone data with ozonesonde measurements
Jiansheng Zou, Kaley A. Walker, Patrick E. Sheese, Chris D. Boone, Ryan M. Stauffer, Anne M. Thompson, and David W. Tarasick
Atmos. Meas. Tech., 17, 6983–7005, https://doi.org/10.5194/amt-17-6983-2024,https://doi.org/10.5194/amt-17-6983-2024, 2024
Short summary

Cited articles

Adams, C., Normand, E. N., McLinden, C. A., Bourassa, A. E., Lloyd, N. D., Degenstein, D. A., Krotkov, N. A., Belmonte Rivas, M., Boersma, K. F., and Eskes, H.: Limb–nadir matching using non-coincident NO2 observations: proof of concept and the OMI-minus-OSIRIS prototype product, Atmos. Meas. Tech., 9, 4103–4122, https://doi.org/10.5194/amt-9-4103-2016, 2016. 
Aggarwal, M., Whiteway, J., Seabrook, J., Gray, L., Strawbridge, K., Liu, P., O'Brien, J., Li, S.-M., and McLaren, R.: Airborne lidar measurements of aerosol and ozone above the Canadian oil sands region, Atmos. Meas. Tech., 11, 3829–3849, https://doi.org/10.5194/amt-11-3829-2018, 2018. 
Amiri, N., Ghahremaninezhad, R., Rempillo, O., Tokarek, T. W., Odame-Ankrah, C. A., Osthoff, H. D., and Norman, A.-L.: Stable sulfur isotope measurements to trace the fate of SO2 in the Athabasca oil sands region, Atmos. Chem. Phys., 18, 7757–7780, https://doi.org/10.5194/acp-18-7757-2018, 2018. 
Baray, S., Darlington, A., Gordon, M., Hayden, K. L., Leithead, A., Li, S.-M., Liu, P. S. K., Mittermeier, R. L., Moussa, S. G., O'Brien, J., Staebler, R., Wolde, M., Worthy, D., and McLaren, R.: Quantification of methane sources in the Athabasca Oil Sands Region of Alberta by aircraft mass balance, Atmos. Chem. Phys., 18, 7361–7378, https://doi.org/10.5194/acp-18-7361-2018, 2018. 
Bogumil, K., Orphal, J., Homann, T., Voigt, S., Spietz, P., Fleischmann, O. C., Vogel, A., Hartmann, M., Bovensmann, H., Frerick, J., and Burrows, J. P.: Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: Instrument characterization and reference data for atmospheric remote sensing in the 230–2380 nm region, J. Photoch. Photobio. A, 157, 167–184, https://doi.org/10.1016/S1010-6030(03)00062-5, 2003. 
Download
Short summary
Here, we evaluate a ground-based remote sensing method (MAX-DOAS) for measuring total pollutant loading and vertical profiles of pollution in the lower atmosphere by comparing our method to a variety of other measurement methods (lidar, sunphotometer, active DOAS, and aircraft measurements). Measurements were made in the Athabasca Oil Sands Region in Alberta, Canada. The complex dataset provided a rare opportunity to evaluate the performance of MAX-DOAS under varying atmospheric conditions.
Share