Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 13, issue 4
Atmos. Meas. Tech., 13, 2035–2056, 2020
https://doi.org/10.5194/amt-13-2035-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 13, 2035–2056, 2020
https://doi.org/10.5194/amt-13-2035-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 22 Apr 2020

Research article | 22 Apr 2020

High-humidity tandem differential mobility analyzer for accurate determination of aerosol hygroscopic growth, microstructure, and activity coefficients over a wide range of relative humidity

Eugene F. Mikhailov and Sergey S. Vlasenko

Data sets

HHTDMA_data to AMTDdoi.org10.5194amt-2019-478 E. F. Mikhailov https://doi.org/10.17605/OSF.IO/87526

Publications Copernicus
Download
Short summary
Here we present the high-humidity tandem differential hygroscopicity analyzer (HHTDMA) and a new method to measure the hygroscopic growth of aerosol particles with in situ restructuring to minimize the influence of particle shape. Our results demonstrate that the HHTDMA system described in this work allows us to determine the thermodynamic characteristics of aqueous solutions with an accuracy close to that obtained by bulk methods.
Here we present the high-humidity tandem differential hygroscopicity analyzer (HHTDMA) and a new...
Citation