Articles | Volume 13, issue 7
Atmos. Meas. Tech., 13, 3835–3853, 2020
Atmos. Meas. Tech., 13, 3835–3853, 2020

Research article 15 Jul 2020

Research article | 15 Jul 2020

Rain event detection in commercial microwave link attenuation data using convolutional neural networks

Julius Polz et al.

Related authors

Rainfall estimation from a German-wide commercial microwave link network: optimized processing and validation for 1 year of data
Maximilian Graf, Christian Chwala, Julius Polz, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 24, 2931–2950,,, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
RainForest: a random forest algorithm for quantitative precipitation estimation over Switzerland
Daniel Wolfensberger, Marco Gabella, Marco Boscacci, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 14, 3169–3193,,, 2021
Short summary
Ground-based temperature and humidity profiling: combining active and passive remote sensors
David D. Turner and Ulrich Löhnert
Atmos. Meas. Tech., 14, 3033–3048,,, 2021
Short summary
Statistically analyzing the effect of ionospheric irregularity on GNSS radio occultation atmospheric measurement
Mingzhe Li and Xinan Yue
Atmos. Meas. Tech., 14, 3003–3013,,, 2021
Short summary
Detection of the melting level with polarimetric weather radar
Daniel Sanchez-Rivas and Miguel A. Rico-Ramirez
Atmos. Meas. Tech., 14, 2873–2890,,, 2021
Short summary
Integrated water vapor and liquid water path retrieval using a single-channel radiometer
Anne-Claire Billault-Roux and Alexis Berne
Atmos. Meas. Tech., 14, 2749–2769,,, 2021
Short summary

Cited articles

Akoglu, H.: User's guide to correlation coefficients, Turkish Journal of Emergency Medicine, 18, 91–93,, 2018. a
Baldi, P., Brunak, S., Chauvin, Y., Andersen, C. A. F., and Nielsen, H.: Assessing the accuracy of prediction algorithms for classification: an overview, Bioinformatics, 16, 412–424,, 2000. a
Bottou, L., Curtis, F. E., and Nocedal, J.: Optimization Methods for Large-Scale Machine Learning, SIAM Rev., 60, 223–311,, 2018. a
Bundesnetzagentur: Tätigkeitsbericht Telekommunikation 2016/2017, Tech. rep., Report 2016/2017, Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen, Bonn, available at: (last access: 2 July 2020), 2017. a
Short summary
Commercial microwave link (CML) networks can be used to estimate path-averaged rain rates. This study evaluates the ability of convolutional neural networks to distinguish between wet and dry periods in CML time series data and the ability to transfer this detection skill to sensors not used for training. Our data set consists of several months of data from 3904 CMLs covering all of Germany. Compared to a previously used detection method, we could show a significant increase in performance.