Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 13, issue 10
Atmos. Meas. Tech., 13, 5293–5301, 2020
https://doi.org/10.5194/amt-13-5293-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 13, 5293–5301, 2020
https://doi.org/10.5194/amt-13-5293-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 07 Oct 2020

Research article | 07 Oct 2020

Improved chloride quantification in quadrupole aerosol chemical speciation monitors (Q-ACSMs)

Anna K. Tobler et al.

Data sets

Improved chloride quantification in quadrupole aerosol chemical speciation monitors (Q-ACSMs) [Data set] Anna K. Tobler, Alicja Skiba, Dongyu S. Wang, Philip Croteau, Katarzyna Styszko, Jarosław Nęcki, Urs Baltensperger, Jay G. Slowik, and André S. H. Prévôt https://doi.org/10.5281/zenodo.3979037

Publications Copernicus
Download
Short summary
Some quadrupole aerosol chemical speciation monitors (Q-ACSMs) have had issues with the quantification of particulate chloride, resulting in apparent negative chloride concentrations. We can show that this is due to the different behavior of Cl+ and HCl+, and we present a correction for the more accurate quantification of chloride. The correction can be applied to measurements in environments where the particulate chloride is dominated by NH4Cl.
Some quadrupole aerosol chemical speciation monitors (Q-ACSMs) have had issues with the...
Citation