Articles | Volume 13, issue 10
https://doi.org/10.5194/amt-13-5681-2020
https://doi.org/10.5194/amt-13-5681-2020
Research article
 | Highlight paper
 | 
26 Oct 2020
Research article | Highlight paper |  | 26 Oct 2020

A technical description of the Balloon Lidar Experiment (BOLIDE)

Bernd Kaifler, Dimitry Rempel, Philipp Roßi, Christian Büdenbender, Natalie Kaifler, and Volodymyr Baturkin

Related authors

Frequency control and monitoring of the ALOMAR RMR lidar's pulsed high-power Nd:YAG lasers
Jens Fiedler, Gerd Baumgarten, Michael Gerding, Torsten Köpnick, Reik Ostermann, and Bernd Kaifler
EGUsphere, https://doi.org/10.5194/egusphere-2025-1995,https://doi.org/10.5194/egusphere-2025-1995, 2025
Short summary
Lidar measurements of noctilucent clouds at Río Grande, Tierra del Fuego, Argentina
Natalie Kaifler, Bernd Kaifler, Markus Rapp, Guiping Liu, Diego Janches, Gerd Baumgarten, and Jose-Luis Hormaechea
Atmos. Chem. Phys., 24, 14029–14044, https://doi.org/10.5194/acp-24-14029-2024,https://doi.org/10.5194/acp-24-14029-2024, 2024
Short summary
Limitations in wavelet analysis of non-stationary atmospheric gravity wave signatures in temperature profiles
Robert Reichert, Natalie Kaifler, and Bernd Kaifler
Atmos. Meas. Tech., 17, 4659–4673, https://doi.org/10.5194/amt-17-4659-2024,https://doi.org/10.5194/amt-17-4659-2024, 2024
Short summary
Signatures of gravity wave-induced instabilities in balloon lidar soundings of polar mesospheric clouds
Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts
Atmos. Chem. Phys., 23, 949–961, https://doi.org/10.5194/acp-23-949-2023,https://doi.org/10.5194/acp-23-949-2023, 2023
Short summary
The polar mesospheric cloud dataset of the Balloon Lidar Experiment (BOLIDE)
Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts
Earth Syst. Sci. Data, 14, 4923–4934, https://doi.org/10.5194/essd-14-4923-2022,https://doi.org/10.5194/essd-14-4923-2022, 2022
Short summary

Cited articles

Baturkin, V., Kaifler, B., Rempel, D., Natalie, N., Spröwitz, T., Henning, F., and Roßi, P.: Design and Flight Performance of the Combined Thermal Control System of the BOLIDE Experiment in Balloon Mission PMC Turbo/2018, International Conference on Environmental Systems, 50th International Conference on Environmental Systems ICES – 2020, available at: https://hdl.handle.net/2346/86433, last access: 21 October 2020. a
Bucholtz, A.: Rayleigh-scattering calculations for the terrestrial atmosphere, Appl. Optics, 34, 2765–2773, https://doi.org/10.1364/AO.34.002765, 1995. a
Collis, R. T. H.: Lidar Observation of Cloud, Science, 149, 978–981, https://doi.org/10.1126/science.149.3687.978, 1965. a
Collis, R. T. H.: Lidar: A new atmospheric probe, Q. J. Roy. Meteor. Soc., 92, 220–230, https://doi.org/10.1002/qj.49709239205, 1966. a
Dehring, M. T., Tchoryk, P., and Wang, J.: High-altitude balloon-based wind LIDAR demonstration: from near space to space, Proc. SPIE, 6220, 62200P, https://doi.org/10.1117/12.669262, 2006. a
Download
Short summary
The Balloon Lidar Experiment was the first lidar dedicated to measurements in the mesosphere flown on a balloon. During a 6 d flight, it made high-resolution observations of polar mesospheric clouds which form at high latitudes during summer at ~ 83 km altitude and are the highest clouds in Earth's atmosphere. We describe the instrument and assess its performance. We could detect fainter clouds with higher resolution than what is possible with ground-based instruments.
Share