Articles | Volume 13, issue 10
https://doi.org/10.5194/amt-13-5681-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-5681-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A technical description of the Balloon Lidar Experiment (BOLIDE)
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Dimitry Rempel
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Philipp Roßi
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Christian Büdenbender
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Natalie Kaifler
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Volodymyr Baturkin
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Raumfahrtsysteme, Bremen, Germany
Related authors
Jens Fiedler, Gerd Baumgarten, Michael Gerding, Torsten Köpnick, Reik Ostermann, and Bernd Kaifler
EGUsphere, https://doi.org/10.5194/egusphere-2025-1995, https://doi.org/10.5194/egusphere-2025-1995, 2025
Short summary
Short summary
We developed a system for frequency control and monitoring of pulsed high-power lasers. It works in real-time, controls the laser cavity length, and performs a spectral analyzes of each individual laser pulse. The motivation for this work was to improve the retrieval of Doppler winds measured by lidar in the middle atmosphere by taking the frequency stability of the lidar transmitter into account.
Natalie Kaifler, Bernd Kaifler, Markus Rapp, Guiping Liu, Diego Janches, Gerd Baumgarten, and Jose-Luis Hormaechea
Atmos. Chem. Phys., 24, 14029–14044, https://doi.org/10.5194/acp-24-14029-2024, https://doi.org/10.5194/acp-24-14029-2024, 2024
Short summary
Short summary
Noctilucent clouds (NLCs) are silvery clouds that can be viewed during twilight and indicate atmospheric conditions like temperature and water vapor in the upper mesosphere. High-resolution measurements from a remote sensing laser instrument provide NLC height, brightness, and occurrence rate since 2017. Most observations occur in the morning hours, likely caused by strong tidal winds, and NLC ice particles are thus transported from elsewhere to the observing location in the Southern Hemisphere.
Robert Reichert, Natalie Kaifler, and Bernd Kaifler
Atmos. Meas. Tech., 17, 4659–4673, https://doi.org/10.5194/amt-17-4659-2024, https://doi.org/10.5194/amt-17-4659-2024, 2024
Short summary
Short summary
Imagine you want to determine how quickly the pitch of a passing ambulance’s siren changes. If the vehicle is traveling slowly, the pitch changes only slightly, but if it is traveling fast, the pitch also changes rapidly. In a similar way, the wind in the middle atmosphere modulates the wavelength of atmospheric gravity waves. We have investigated the question of how strong the maximum wind may be so that the change in wavelength can still be determined with the help of wavelet transformation.
Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts
Atmos. Chem. Phys., 23, 949–961, https://doi.org/10.5194/acp-23-949-2023, https://doi.org/10.5194/acp-23-949-2023, 2023
Short summary
Short summary
We used a lidar to measure polar mesospheric clouds from a balloon floating in the upper stratosphere. The thin-layered ice clouds at 83 km altitude are perturbed by waves. The high-resolution lidar soundings reveal small-scale structures induced by the breaking of those waves. We study these patterns and find that they occur very often. We show their morphology and discuss associated dynamical physical processes, which help to interpret case studies and to guide modelling.
Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts
Earth Syst. Sci. Data, 14, 4923–4934, https://doi.org/10.5194/essd-14-4923-2022, https://doi.org/10.5194/essd-14-4923-2022, 2022
Short summary
Short summary
We measured polar mesospheric clouds (PMCs), our Earth’s highest clouds at the edge of space, with a Rayleigh lidar from a stratospheric balloon. We describe how we derive the cloud’s brightness and discuss the stability of the gondola pointing and the sensitivity of our measurements. We present our high-resolution PMC dataset that is used to study dynamical processes in the upper mesosphere, e.g. regarding gravity waves, mesospheric bores, vortex rings, and Kelvin–Helmholtz instabilities.
Kevin Ohneiser, Albert Ansmann, Bernd Kaifler, Alexandra Chudnovsky, Boris Barja, Daniel A. Knopf, Natalie Kaifler, Holger Baars, Patric Seifert, Diego Villanueva, Cristofer Jimenez, Martin Radenz, Ronny Engelmann, Igor Veselovskii, and Félix Zamorano
Atmos. Chem. Phys., 22, 7417–7442, https://doi.org/10.5194/acp-22-7417-2022, https://doi.org/10.5194/acp-22-7417-2022, 2022
Short summary
Short summary
We present and discuss 2 years of long-term lidar observations of the largest stratospheric perturbation by wildfire smoke ever observed. The smoke originated from the record-breaking Australian fires in 2019–2020 and affects climate conditions and even the ozone layer in the Southern Hemisphere. The obvious link between dense smoke occurrence in the stratosphere and strong ozone depletion found in the Arctic and in the Antarctic in 2020 can be regarded as a new aspect of climate change.
Stefanie Knobloch, Bernd Kaifler, and Markus Rapp
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-310, https://doi.org/10.5194/amt-2021-310, 2022
Preprint withdrawn
Short summary
Short summary
The study tests the quality of temperature measurements from the airborne Rayleigh lidar ALIMA. The ALIMA system was first used during the SouthTRAC campaign in September 2019 in the vicinity of the Southern Andes, Drake Passage and Antarctic Peninsula. The raw lidar measurements are additionally simulated based on reanalysis data for one research flight. Different types of uncertainty influencing the accuracy of the temperature measurements are studied, e.g. atmospheric and technical sources.
Emranul Sarkar, Alexander Kozlovsky, Thomas Ulich, Ilkka Virtanen, Mark Lester, and Bernd Kaifler
Atmos. Meas. Tech., 14, 4157–4169, https://doi.org/10.5194/amt-14-4157-2021, https://doi.org/10.5194/amt-14-4157-2021, 2021
Short summary
Short summary
The biasing effect in meteor radar temperature has been a pressing issue for the last 2 decades. This paper has addressed the underlying reasons for such a biasing effect on both theoretical and experimental grounds. An improved statistical method has been developed which allows atmospheric temperatures at around 90 km to be measured with meteor radar in an independent way such that any subsequent bias correction or calibration is no longer required.
Bernd Kaifler and Natalie Kaifler
Atmos. Meas. Tech., 14, 1715–1732, https://doi.org/10.5194/amt-14-1715-2021, https://doi.org/10.5194/amt-14-1715-2021, 2021
Short summary
Short summary
This paper describes the Compact Rayleigh Autonomous Lidar (CORAL), which is the first lidar instrument to make fully automatic high-resolution measurements of atmospheric density and temperature between 15 and 90 km altitude. CORAL achieves a much larger measurement cadence than conventional lidars and thus facilitates studies of rare atmospheric phenomena.
Jens Fiedler, Gerd Baumgarten, Michael Gerding, Torsten Köpnick, Reik Ostermann, and Bernd Kaifler
EGUsphere, https://doi.org/10.5194/egusphere-2025-1995, https://doi.org/10.5194/egusphere-2025-1995, 2025
Short summary
Short summary
We developed a system for frequency control and monitoring of pulsed high-power lasers. It works in real-time, controls the laser cavity length, and performs a spectral analyzes of each individual laser pulse. The motivation for this work was to improve the retrieval of Doppler winds measured by lidar in the middle atmosphere by taking the frequency stability of the lidar transmitter into account.
Natalie Kaifler, Bernd Kaifler, Markus Rapp, Guiping Liu, Diego Janches, Gerd Baumgarten, and Jose-Luis Hormaechea
Atmos. Chem. Phys., 24, 14029–14044, https://doi.org/10.5194/acp-24-14029-2024, https://doi.org/10.5194/acp-24-14029-2024, 2024
Short summary
Short summary
Noctilucent clouds (NLCs) are silvery clouds that can be viewed during twilight and indicate atmospheric conditions like temperature and water vapor in the upper mesosphere. High-resolution measurements from a remote sensing laser instrument provide NLC height, brightness, and occurrence rate since 2017. Most observations occur in the morning hours, likely caused by strong tidal winds, and NLC ice particles are thus transported from elsewhere to the observing location in the Southern Hemisphere.
Robert Reichert, Natalie Kaifler, and Bernd Kaifler
Atmos. Meas. Tech., 17, 4659–4673, https://doi.org/10.5194/amt-17-4659-2024, https://doi.org/10.5194/amt-17-4659-2024, 2024
Short summary
Short summary
Imagine you want to determine how quickly the pitch of a passing ambulance’s siren changes. If the vehicle is traveling slowly, the pitch changes only slightly, but if it is traveling fast, the pitch also changes rapidly. In a similar way, the wind in the middle atmosphere modulates the wavelength of atmospheric gravity waves. We have investigated the question of how strong the maximum wind may be so that the change in wavelength can still be determined with the help of wavelet transformation.
Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts
Atmos. Chem. Phys., 23, 949–961, https://doi.org/10.5194/acp-23-949-2023, https://doi.org/10.5194/acp-23-949-2023, 2023
Short summary
Short summary
We used a lidar to measure polar mesospheric clouds from a balloon floating in the upper stratosphere. The thin-layered ice clouds at 83 km altitude are perturbed by waves. The high-resolution lidar soundings reveal small-scale structures induced by the breaking of those waves. We study these patterns and find that they occur very often. We show their morphology and discuss associated dynamical physical processes, which help to interpret case studies and to guide modelling.
Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts
Earth Syst. Sci. Data, 14, 4923–4934, https://doi.org/10.5194/essd-14-4923-2022, https://doi.org/10.5194/essd-14-4923-2022, 2022
Short summary
Short summary
We measured polar mesospheric clouds (PMCs), our Earth’s highest clouds at the edge of space, with a Rayleigh lidar from a stratospheric balloon. We describe how we derive the cloud’s brightness and discuss the stability of the gondola pointing and the sensitivity of our measurements. We present our high-resolution PMC dataset that is used to study dynamical processes in the upper mesosphere, e.g. regarding gravity waves, mesospheric bores, vortex rings, and Kelvin–Helmholtz instabilities.
Kevin Ohneiser, Albert Ansmann, Bernd Kaifler, Alexandra Chudnovsky, Boris Barja, Daniel A. Knopf, Natalie Kaifler, Holger Baars, Patric Seifert, Diego Villanueva, Cristofer Jimenez, Martin Radenz, Ronny Engelmann, Igor Veselovskii, and Félix Zamorano
Atmos. Chem. Phys., 22, 7417–7442, https://doi.org/10.5194/acp-22-7417-2022, https://doi.org/10.5194/acp-22-7417-2022, 2022
Short summary
Short summary
We present and discuss 2 years of long-term lidar observations of the largest stratospheric perturbation by wildfire smoke ever observed. The smoke originated from the record-breaking Australian fires in 2019–2020 and affects climate conditions and even the ozone layer in the Southern Hemisphere. The obvious link between dense smoke occurrence in the stratosphere and strong ozone depletion found in the Arctic and in the Antarctic in 2020 can be regarded as a new aspect of climate change.
Stefanie Knobloch, Bernd Kaifler, and Markus Rapp
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-310, https://doi.org/10.5194/amt-2021-310, 2022
Preprint withdrawn
Short summary
Short summary
The study tests the quality of temperature measurements from the airborne Rayleigh lidar ALIMA. The ALIMA system was first used during the SouthTRAC campaign in September 2019 in the vicinity of the Southern Andes, Drake Passage and Antarctic Peninsula. The raw lidar measurements are additionally simulated based on reanalysis data for one research flight. Different types of uncertainty influencing the accuracy of the temperature measurements are studied, e.g. atmospheric and technical sources.
Emranul Sarkar, Alexander Kozlovsky, Thomas Ulich, Ilkka Virtanen, Mark Lester, and Bernd Kaifler
Atmos. Meas. Tech., 14, 4157–4169, https://doi.org/10.5194/amt-14-4157-2021, https://doi.org/10.5194/amt-14-4157-2021, 2021
Short summary
Short summary
The biasing effect in meteor radar temperature has been a pressing issue for the last 2 decades. This paper has addressed the underlying reasons for such a biasing effect on both theoretical and experimental grounds. An improved statistical method has been developed which allows atmospheric temperatures at around 90 km to be measured with meteor radar in an independent way such that any subsequent bias correction or calibration is no longer required.
Bernd Kaifler and Natalie Kaifler
Atmos. Meas. Tech., 14, 1715–1732, https://doi.org/10.5194/amt-14-1715-2021, https://doi.org/10.5194/amt-14-1715-2021, 2021
Short summary
Short summary
This paper describes the Compact Rayleigh Autonomous Lidar (CORAL), which is the first lidar instrument to make fully automatic high-resolution measurements of atmospheric density and temperature between 15 and 90 km altitude. CORAL achieves a much larger measurement cadence than conventional lidars and thus facilitates studies of rare atmospheric phenomena.
Cited articles
Baturkin, V., Kaifler, B., Rempel, D., Natalie, N., Spröwitz, T., Henning, F., and Roßi, P.: Design and Flight Performance of the Combined Thermal Control System of the BOLIDE Experiment in Balloon Mission PMC Turbo/2018,
International Conference on Environmental Systems, 50th International Conference on Environmental Systems ICES – 2020, available at: https://hdl.handle.net/2346/86433, last access: 21 October 2020. a
Bucholtz, A.: Rayleigh-scattering calculations for the terrestrial atmosphere, Appl. Optics, 34, 2765–2773, https://doi.org/10.1364/AO.34.002765, 1995. a
Collis, R. T. H.: Lidar Observation of Cloud, Science, 149, 978–981,
https://doi.org/10.1126/science.149.3687.978, 1965. a
Collis, R. T. H.: Lidar: A new atmospheric probe, Q. J. Roy. Meteor. Soc., 92, 220–230, https://doi.org/10.1002/qj.49709239205, 1966. a
Dehring, M. T., Tchoryk, P., and Wang, J.: High-altitude balloon-based wind
LIDAR demonstration: from near space to space, Proc. SPIE, 6220, 62200P, https://doi.org/10.1117/12.669262, 2006. a
Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter, B., Pause, C., Dowling, T., and Bugliaro, L.: The libRadtran software package for radiative transfer calculations (version 2.0.1), Geosci. Model Dev., 9, 1647–1672, https://doi.org/10.5194/gmd-9-1647-2016, 2016. a, b
Fiedler, J., Baumgarten, G., Berger, U., Hoffmann, P., Kaifler, N., and Lübken, F.-J.: NLC and the background atmosphere above ALOMAR, Atmos. Chem. Phys., 11, 5701–5717, https://doi.org/10.5194/acp-11-5701-2011, 2011. a
Fritts, D. C., Miller, A. D., Kjellstrand, C. B., Geach, C., Williams, B. P.,
Kaifler, B., Kaifler, N., Jones, G., Rapp, M., Limon, M., Reimuller, J.,
Wang, L., Hanany, S., Gisinger, S., Zhao, Y., Stober, G., and Randall, C. E.:
PMC Turbo: Studying Gravity Wave and Instability Dynamics in the Summer
Mesosphere Using Polar Mesospheric Cloud Imaging and Profiling From a
Stratospheric Balloon, J. Geophys. Res.-Atmos., 124,
6423–6443, https://doi.org/10.1029/2019JD030298,
2019. a, b, c, d
Fritts, D. C., Kaifler, N., Kaifler, B., Geach, C., Kjellstrand, C. B.,
Williams, B. P., Eckermann, S. D., Miller, A. D., Rapp, M., Jones, G., Limon,
M., Reimuller, J., and Wang, L.: Mesospheric Bore Evolution and Instability
Dynamics Observed in PMC Turbo Imaging and Rayleigh Lidar Profiling Over
Northeastern Canada on 13 July 2018, J. Geophys. Res.-Atmos., 125, e2019JD032037, https://doi.org/10.1029/2019JD032037, 2020. a, b
German Aerospace Center (DLR): Mission: PMC Turbo, HALO database, available at: https://halo-db.pa.op.dlr.de/mission/112, last access: 21 October 2020. a
Gibson, A. J., Thomas, L., and Bhattachacharyya, S. K.: Laser observations of
the ground-state hyperfine structure of sodium and of temperatures in the
upper atmosphere, Nature, 281, 131–132, https://doi.org/10.1038/281131a0, 1979. a
Golombek, M. P., Anderson, R. C., Barnes, J. R., Bell III, J. F., Bridges,
N. T., Britt, D. T., Brückner, J., Cook, R. A., Crisp, D., Crisp, J. A.,
Economou, T., Folkner, W. M., Greeley, R., Haberle, R. M., Hargraves, R. B.,
Harris, J. A., Haldemann, A. F. C., Herkenhoff, K. E., Hviid, S. F., Jaumann,
R., Johnson, J. R., Kallemeyn, P. H., Keller, H. U., Kirk, R. L., Knudsen,
J. M., Larsen, S., Lemmon, M. T., Madsen, M. B., Magalhães, J. A., Maki,
J. N., Malin, M. C., Manning, R. M., Matijevic, J., McSween Jr., H. Y.,
Moore, H. J., Murchie, S. L., Murphy, J. R., Parker, T. J., Rieder, R.,
Rivellini, T. P., Schofield, J. T., Seiff, A., Singer, R. B., Smith, P. H.,
Soderblom, L. A., Spencer, D. A., Stoker, C. R., Sullivan, R., Thomas, N.,
Thurman, S. W., Tomasko, M. G., Vaughan, R. M., Wänke, H., Ward, A. W., and
Wilson, G. R.: Overview of the Mars Pathfinder Mission: Launch through
landing, surface operations, data sets, and science results, J.
Geophys. Res.-Planet., 104, 8523–8553, https://doi.org/10.1029/98JE02554,
1999. a
Hauchecorne, A. and Chanin, M.-L.: Density and temperature profiles obtained by lidar between 35 and 70 km, Geophys. Res. Lett., 7, 565–568,
https://doi.org/10.1029/GL007i008p00565,
1980. a, b
Kaifler, B., Kaifler, N., Ehard, B., Dörnbrack, A., Rapp, M., and Fritts,
D. C.: Influences of source conditions on mountain wave penetration into the
stratosphere and mesosphere, Geophys. Res. Lett., 42, 9488–9494,
https://doi.org/10.1002/2015GL066465,
2015. a
Kaifler, B., Büdenbender, C., Mahnke, P., Damm, M., Sauder, D., Kaifler,
N., and Rapp, M.: Demonstration of an iron fluorescence lidar operating at
372 nm wavelength using a newly-developed Nd:YAG laser,
Opt. Lett., 42, 2858–2861, https://doi.org/10.1364/OL.42.002858, 2017. a
Kaifler, N., Kaifler, B., Wilms, H., Rapp, M., Stober, G., and Jacobi, C.:
Mesospheric Temperature During the Extreme Midlatitude Noctilucent Cloud
Event on 18/19 July 2016, J. Geophys. Res.-Atmos., 123,
13775–13789, https://doi.org/10.1029/2018JD029717,
2018. a, b
Kjellstrand, C. B., Jones, G., Geach, C., Williams, B. P., Fritts, D. C.,
Miller, A., Hanany, S., Limon, M., and Reimuller, J.: The PMC Turbo Balloon Mission to Measure Gravity Waves and Turbulence in Polar Mesospheric Clouds: Camera, Telemetry, and Software Performance, Earth Space Sci.,
7, e2020EA001238, https://doi.org/10.1029/2020EA001238, 2020. a
Krueger, D. A., She, C.-Y., and Yuan, T.: Retrieving mesopause temperature and line-of-sight wind from full-diurnal-cycle Na lidar observations, Appl. Optics, 54, 9469–9489, https://doi.org/10.1364/AO.54.009469, 2015.
a
Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.: NRLMSISE-00
empirical model of the atmosphere: Statistical comparisons and scientific
issues, J. Geophys. Res.-Space, 107, SIA 15–1-SIA
15–16, https://doi.org/10.1029/2002JA009430,
2002. a, b
Ridder, C., Baumgarten, G., Fiedler, J., Lübken, F.-J., and Stober, G.:
Analysis of small-scale structures in lidar observations of noctilucent
clouds using a pattern recognition method, J. Atmos.
Sol.-Terr. Phy., 162, 48–56,
https://doi.org/10.1016/j.jastp.2017.04.005, 2017. a
Schuster, B. G.: Detection of tropospheric and stratospheric aerosol layers by optical radar (Lidar), J. Geophys. Res., 75,
3123–3132, https://doi.org/10.1029/JC075i015p03123,
1970. a
Sox, L., Wickwar, V. B., Yuan, T., and Criddle, N. R.: Simultaneous
Rayleigh-Scatter and Sodium Resonance Lidar Temperature Comparisons in the
Mesosphere-Lower Thermosphere, J. Geophys. Res.-Atmos.,
123, 10688–10706, https://doi.org/10.1029/2018JD029438,
2018. a
von Zahn, U., von Cossart, G., Fiedler, J., Fricke, K. H., Nelke, G., Baumgarten, G., Rees, D., Hauchecorne, A., and Adolfsen, K.: The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance, Ann. Geophys., 18, 815–833, https://doi.org/10.1007/s00585-000-0815-2, 2000. a
Short summary
The Balloon Lidar Experiment was the first lidar dedicated to measurements in the mesosphere flown on a balloon. During a 6 d flight, it made high-resolution observations of polar mesospheric clouds which form at high latitudes during summer at ~ 83 km altitude and are the highest clouds in Earth's atmosphere. We describe the instrument and assess its performance. We could detect fainter clouds with higher resolution than what is possible with ground-based instruments.
The Balloon Lidar Experiment was the first lidar dedicated to measurements in the mesosphere...