Articles | Volume 13, issue 12
https://doi.org/10.5194/amt-13-6691-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-6691-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Combined use of Mie–Raman and fluorescence lidar observations for improving aerosol characterization: feasibility experiment
Igor Veselovskii
CORRESPONDING AUTHOR
Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Qiaoyun Hu
Univ. Lille, CNRS, UMR 8518 – LOA – Laboratoire d'Optique Atmosphérique, Lille 59000, France
Philippe Goloub
Univ. Lille, CNRS, UMR 8518 – LOA – Laboratoire d'Optique Atmosphérique, Lille 59000, France
Thierry Podvin
Univ. Lille, CNRS, UMR 8518 – LOA – Laboratoire d'Optique Atmosphérique, Lille 59000, France
Mikhail Korenskiy
Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Olivier Pujol
Univ. Lille, CNRS, UMR 8518 – LOA – Laboratoire d'Optique Atmosphérique, Lille 59000, France
Oleg Dubovik
Univ. Lille, CNRS, UMR 8518 – LOA – Laboratoire d'Optique Atmosphérique, Lille 59000, France
Anton Lopatin
GRASP-SAS, Villeneuve d'Ascq, France
Viewed
Total article views: 3,877 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 29 Jul 2020)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,974 | 833 | 70 | 3,877 | 86 | 88 |
- HTML: 2,974
- PDF: 833
- XML: 70
- Total: 3,877
- BibTeX: 86
- EndNote: 88
Total article views: 3,422 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 09 Dec 2020)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,722 | 637 | 63 | 3,422 | 78 | 77 |
- HTML: 2,722
- PDF: 637
- XML: 63
- Total: 3,422
- BibTeX: 78
- EndNote: 77
Total article views: 455 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 29 Jul 2020)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
252 | 196 | 7 | 455 | 8 | 11 |
- HTML: 252
- PDF: 196
- XML: 7
- Total: 455
- BibTeX: 8
- EndNote: 11
Viewed (geographical distribution)
Total article views: 3,877 (including HTML, PDF, and XML)
Thereof 3,716 with geography defined
and 161 with unknown origin.
Total article views: 3,422 (including HTML, PDF, and XML)
Thereof 3,308 with geography defined
and 114 with unknown origin.
Total article views: 455 (including HTML, PDF, and XML)
Thereof 408 with geography defined
and 47 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
22 citations as recorded by crossref.
- Measurement report: Characterization of the vertical distribution of airborne <i>Pinus</i> pollen in the atmosphere with lidar-derived profiles – a modeling case study in the region of Barcelona, NE Spain M. Sicard et al. 10.5194/acp-21-17807-2021
- Combining Mie–Raman and fluorescence observations: a step forward in aerosol classification with lidar technology I. Veselovskii et al. 10.5194/amt-15-4881-2022
- Long term observations of biomass burning aerosol over Warsaw by means of multiwavelength lidar L. Janicka et al. 10.1364/OE.496794
- Russian Studies on Clouds and Precipitation in 2019–2022 N. Bezrukova & A. Chernokulsky 10.31857/S0002351523070039
- Retrieval and analysis of the composition of an aerosol mixture through Mie–Raman–fluorescence lidar observations I. Veselovskii et al. 10.5194/amt-17-4137-2024
- Understanding Aerosol–Cloud Interactions through Lidar Techniques: A Review F. Cairo et al. 10.3390/rs16152788
- Mie–Raman–fluorescence lidar observations of aerosols during pollen season in the north of France I. Veselovskii et al. 10.5194/amt-14-4773-2021
- Spectrally Resolved Raman Lidar to Measure Backscatter Spectra of Atmospheric Three-Phase Water and Fluorescent Aerosols Simultaneously: Instrument, Methodology, and Preliminary Results F. Liu et al. 10.1109/TGRS.2022.3166191
- A review of coarse mineral dust in the Earth system A. Adebiyi et al. 10.1016/j.aeolia.2022.100849
- Identification of fluorescent aerosol observed by a spectroscopic lidar over northwest China Y. Wang et al. 10.1364/OE.493557
- Multiwavelength fluorescence lidar observations of smoke plumes I. Veselovskii et al. 10.5194/amt-16-2055-2023
- Pollen classification using a single particle fluorescence spectroscopy technique B. Swanson et al. 10.1080/02786826.2022.2142510
- Derivation of depolarization ratios of aerosol fluorescence and water vapor Raman backscatters from lidar measurements I. Veselovskii et al. 10.5194/amt-17-1023-2024
- Spectrometric fluorescence and Raman lidar: absolute calibration of aerosol fluorescence spectra and fluorescence correction of humidity measurements J. Reichardt et al. 10.5194/amt-16-1-2023
- Innovative aerosol hygroscopic growth study from Mie–Raman–fluorescence lidar and microwave radiometer synergy R. Miri et al. 10.5194/amt-17-3367-2024
- Russian Studies on Clouds and Precipitation in 2019–2022 N. Bezrukova & A. Chernokulsky 10.1134/S0001433823150033
- The characterization of long-range transported North American biomass burning plumes: what can a multi-wavelength Mie–Raman-polarization-fluorescence lidar provide? Q. Hu et al. 10.5194/acp-22-5399-2022
- Initial experimental multi-wavelength EEM (Excitation Emission Matrix) fluorescence lidar detection and classification of atmospheric pollen with potential applications toward real-time bioaerosols monitoring Y. Saito & K. Kawai 10.1364/OE.459350
- Fluorescence lidar observations of wildfire smoke inside cirrus: a contribution to smoke–cirrus interaction research I. Veselovskii et al. 10.5194/acp-22-5209-2022
- Observation and Classification of Low-Altitude Haze Aerosols Using Fluorescence–Raman–Mie Polarization Lidar in Beijing during Spring 2024 Y. Jiang et al. 10.3390/rs16173225
- Retrieval of Aerosol Microphysical Properties from Multi-Wavelength Mie–Raman Lidar Using Maximum Likelihood Estimation: Algorithm, Performance, and Application Y. Chang et al. 10.3390/rs14246208
- Diode laser generating 3-ns pulses for a high resolution lidar S. Pershin et al. 10.1070/QEL17544
22 citations as recorded by crossref.
- Measurement report: Characterization of the vertical distribution of airborne <i>Pinus</i> pollen in the atmosphere with lidar-derived profiles – a modeling case study in the region of Barcelona, NE Spain M. Sicard et al. 10.5194/acp-21-17807-2021
- Combining Mie–Raman and fluorescence observations: a step forward in aerosol classification with lidar technology I. Veselovskii et al. 10.5194/amt-15-4881-2022
- Long term observations of biomass burning aerosol over Warsaw by means of multiwavelength lidar L. Janicka et al. 10.1364/OE.496794
- Russian Studies on Clouds and Precipitation in 2019–2022 N. Bezrukova & A. Chernokulsky 10.31857/S0002351523070039
- Retrieval and analysis of the composition of an aerosol mixture through Mie–Raman–fluorescence lidar observations I. Veselovskii et al. 10.5194/amt-17-4137-2024
- Understanding Aerosol–Cloud Interactions through Lidar Techniques: A Review F. Cairo et al. 10.3390/rs16152788
- Mie–Raman–fluorescence lidar observations of aerosols during pollen season in the north of France I. Veselovskii et al. 10.5194/amt-14-4773-2021
- Spectrally Resolved Raman Lidar to Measure Backscatter Spectra of Atmospheric Three-Phase Water and Fluorescent Aerosols Simultaneously: Instrument, Methodology, and Preliminary Results F. Liu et al. 10.1109/TGRS.2022.3166191
- A review of coarse mineral dust in the Earth system A. Adebiyi et al. 10.1016/j.aeolia.2022.100849
- Identification of fluorescent aerosol observed by a spectroscopic lidar over northwest China Y. Wang et al. 10.1364/OE.493557
- Multiwavelength fluorescence lidar observations of smoke plumes I. Veselovskii et al. 10.5194/amt-16-2055-2023
- Pollen classification using a single particle fluorescence spectroscopy technique B. Swanson et al. 10.1080/02786826.2022.2142510
- Derivation of depolarization ratios of aerosol fluorescence and water vapor Raman backscatters from lidar measurements I. Veselovskii et al. 10.5194/amt-17-1023-2024
- Spectrometric fluorescence and Raman lidar: absolute calibration of aerosol fluorescence spectra and fluorescence correction of humidity measurements J. Reichardt et al. 10.5194/amt-16-1-2023
- Innovative aerosol hygroscopic growth study from Mie–Raman–fluorescence lidar and microwave radiometer synergy R. Miri et al. 10.5194/amt-17-3367-2024
- Russian Studies on Clouds and Precipitation in 2019–2022 N. Bezrukova & A. Chernokulsky 10.1134/S0001433823150033
- The characterization of long-range transported North American biomass burning plumes: what can a multi-wavelength Mie–Raman-polarization-fluorescence lidar provide? Q. Hu et al. 10.5194/acp-22-5399-2022
- Initial experimental multi-wavelength EEM (Excitation Emission Matrix) fluorescence lidar detection and classification of atmospheric pollen with potential applications toward real-time bioaerosols monitoring Y. Saito & K. Kawai 10.1364/OE.459350
- Fluorescence lidar observations of wildfire smoke inside cirrus: a contribution to smoke–cirrus interaction research I. Veselovskii et al. 10.5194/acp-22-5209-2022
- Observation and Classification of Low-Altitude Haze Aerosols Using Fluorescence–Raman–Mie Polarization Lidar in Beijing during Spring 2024 Y. Jiang et al. 10.3390/rs16173225
- Retrieval of Aerosol Microphysical Properties from Multi-Wavelength Mie–Raman Lidar Using Maximum Likelihood Estimation: Algorithm, Performance, and Application Y. Chang et al. 10.3390/rs14246208
- Diode laser generating 3-ns pulses for a high resolution lidar S. Pershin et al. 10.1070/QEL17544
Latest update: 20 Nov 2024
Short summary
To study the feasibility of a fluorescence lidar for aerosol characterization, the fluorescence channel is added to the multiwavelength Mie-Raman lidar of Lille University. A part of the fluorescence spectrum is selected by the interference filter of 44 nm bandwidth centered at 466 nm. Such an approach has demonstrated high sensitivity, allowing fluorescence signals from weak aerosol layers to be detected. The technique can also be used for monitoring the aerosol inside the cloud layers.
To study the feasibility of a fluorescence lidar for aerosol characterization, the fluorescence...