Articles | Volume 14, issue 2
https://doi.org/10.5194/amt-14-1075-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-1075-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydrometeor classification of quasi-vertical profiles of polarimetric radar measurements using a top-down iterative hierarchical clustering method
National Centre for Atmospheric Science, Leeds, United Kingdom
School of Earth and Environment, University of Leeds, Leeds, United Kingdom
David Dufton
National Centre for Atmospheric Science, Leeds, United Kingdom
School of Earth and Environment, University of Leeds, Leeds, United Kingdom
Jonathan Crosier
National Centre for Atmospheric Science, Manchester, United Kingdom
Department of Earth and Environmental Sciences, University of
Manchester, Manchester, United Kingdom
Joshua M. Hampton
National Centre for Atmospheric Science, Leeds, United Kingdom
School of Earth and Environment, University of Leeds, Leeds, United Kingdom
Lindsay Bennett
National Centre for Atmospheric Science, Leeds, United Kingdom
School of Earth and Environment, University of Leeds, Leeds, United Kingdom
Ryan R. Neely III
National Centre for Atmospheric Science, Leeds, United Kingdom
School of Earth and Environment, University of Leeds, Leeds, United Kingdom
Related authors
No articles found.
Andrew Steven Martin, Heather Guy, Michael Ray Gallagher, and Ryan Reynolds Neely III
EGUsphere, https://doi.org/10.5194/egusphere-2025-6079, https://doi.org/10.5194/egusphere-2025-6079, 2025
Short summary
Short summary
Matching geospatial data between datasets recorded on different coordinate systems requires choosing parameters that impact the subset of data in downstream analyses. We developed a framework to optimise the choice of parameters by maximising the mutual information between the data being compared. The optimised parameters vary spatially, and using the optimised parameters results in better comparisons between data than using fixed choices of parameters.
Heather Guy, Andrew S. Martin, Erik Olson, Ian M. Brooks, and Ryan R. Neely III
Atmos. Chem. Phys., 24, 11103–11114, https://doi.org/10.5194/acp-24-11103-2024, https://doi.org/10.5194/acp-24-11103-2024, 2024
Short summary
Short summary
Aerosol particles impact cloud properties which influence Greenland Ice Sheet melt. Understanding the aerosol population that interacts with clouds is important for constraining future melt. Measurements of aerosols at cloud height over Greenland are rare, and surface measurements are often used to investigate cloud–aerosol interactions. We use a tethered balloon to measure aerosols up to cloud base and show that surface measurements are often not equivalent to those just below the cloud.
Declan L. Finney, Alan M. Blyth, Martin Gallagher, Huihui Wu, Graeme J. Nott, Michael I. Biggerstaff, Richard G. Sonnenfeld, Martin Daily, Dan Walker, David Dufton, Keith Bower, Steven Böing, Thomas Choularton, Jonathan Crosier, James Groves, Paul R. Field, Hugh Coe, Benjamin J. Murray, Gary Lloyd, Nicholas A. Marsden, Michael Flynn, Kezhen Hu, Navaneeth M. Thamban, Paul I. Williams, Paul J. Connolly, James B. McQuaid, Joseph Robinson, Zhiqiang Cui, Ralph R. Burton, Gordon Carrie, Robert Moore, Steven J. Abel, Dave Tiddeman, and Graydon Aulich
Earth Syst. Sci. Data, 16, 2141–2163, https://doi.org/10.5194/essd-16-2141-2024, https://doi.org/10.5194/essd-16-2141-2024, 2024
Short summary
Short summary
The DCMEX (Deep Convective Microphysics Experiment) project undertook an aircraft- and ground-based measurement campaign of New Mexico deep convective clouds during July–August 2022. The campaign coordinated a broad range of instrumentation measuring aerosol, cloud physics, radar signals, thermodynamics, dynamics, electric fields, and weather. The project's objectives included the utilisation of these data with satellite observations to study the anvil cloud radiative effect.
Gillian Young McCusker, Jutta Vüllers, Peggy Achtert, Paul Field, Jonathan J. Day, Richard Forbes, Ruth Price, Ewan O'Connor, Michael Tjernström, John Prytherch, Ryan Neely III, and Ian M. Brooks
Atmos. Chem. Phys., 23, 4819–4847, https://doi.org/10.5194/acp-23-4819-2023, https://doi.org/10.5194/acp-23-4819-2023, 2023
Short summary
Short summary
In this study, we show that recent versions of two atmospheric models – the Unified Model and Integrated Forecasting System – overestimate Arctic cloud fraction within the lower troposphere by comparison with recent remote-sensing measurements made during the Arctic Ocean 2018 expedition. The overabundance of cloud is interlinked with the modelled thermodynamic structure, with strong negative temperature biases coincident with these overestimated cloud layers.
Heather Guy, David D. Turner, Von P. Walden, Ian M. Brooks, and Ryan R. Neely
Atmos. Meas. Tech., 15, 5095–5115, https://doi.org/10.5194/amt-15-5095-2022, https://doi.org/10.5194/amt-15-5095-2022, 2022
Short summary
Short summary
Fog formation is highly sensitive to near-surface temperatures and humidity profiles. Passive remote sensing instruments can provide continuous measurements of the vertical temperature and humidity profiles and liquid water content, which can improve fog forecasts. Here we compare the performance of collocated infrared and microwave remote sensing instruments and demonstrate that the infrared instrument is especially sensitive to the onset of thin radiation fog.
Lucas J. Sterzinger, Joseph Sedlar, Heather Guy, Ryan R. Neely III, and Adele L. Igel
Atmos. Chem. Phys., 22, 8973–8988, https://doi.org/10.5194/acp-22-8973-2022, https://doi.org/10.5194/acp-22-8973-2022, 2022
Short summary
Short summary
Aerosol particles are required for cloud droplets to form, and the Arctic atmosphere often has much fewer aerosols than at lower latitudes. In this study, we investigate whether aerosol concentrations can drop so low as to no longer support a cloud. We use observations to initialize idealized model simulations to investigate a worst-case scenario where all aerosol is removed from the environment instantaneously. We find that this mechanism is possible in two cases and is unlikely in the third.
Heather Guy, Ian M. Brooks, Ken S. Carslaw, Benjamin J. Murray, Von P. Walden, Matthew D. Shupe, Claire Pettersen, David D. Turner, Christopher J. Cox, William D. Neff, Ralf Bennartz, and Ryan R. Neely III
Atmos. Chem. Phys., 21, 15351–15374, https://doi.org/10.5194/acp-21-15351-2021, https://doi.org/10.5194/acp-21-15351-2021, 2021
Short summary
Short summary
We present the first full year of surface aerosol number concentration measurements from the central Greenland Ice Sheet. Aerosol concentrations here have a distinct seasonal cycle from those at lower-altitude Arctic sites, which is driven by large-scale atmospheric circulation. Our results can be used to help understand the role aerosols might play in Greenland surface melt through the modification of cloud properties. This is crucial in a rapidly changing region where observations are sparse.
Cited articles
Abdi, H. and Williams, L. J.: Principal component analysis, WIREs Comp. Stat.,
2, 433–459, 2010.
Al-Sakka, H., Boumahmoud, A. A., Fradon, B., Frasier, S. J., and Tabary, P.: A new fuzzy logic hydrometeor classification scheme applied to the French X-,
C-, and S-band polarimetric radars, J. Appl. Meteorol. Clim., 52, 2328–2344, 2013.
Aydin, K., Seliga, T. A., and Balaji, V.: Remote sensing of hail with a dual
linear polarization radar, J. Appl. Meteorol., 25, 1475–1484, 1986.
Baldini, L. and Gorgucci, E.: Identification of the Melting Layer through
Dual-Polarization Radar Measurements at Vertical Incidence, J. Atmos.
Ocean. Tech., 23, 829–839, https://doi.org/10.1175/JTECH1884.1, 2006.
Baumgardner, D., Jonsson, H., Dawson, W., O'Connor, D., and Newton, R.: The
cloud, aerosol and precipitation spectrometer: a new instrument for cloud
investigations, Atmos. Res., 59–60, 251–264, https://doi.org/10.1016/S0169-8095(01)00119-3, 2001.
Baumgardner, D., Abel, S.J., Axisa, D., Cotton, R., Crosier, J., Field, P.,
Gurganus, C., Heymsfield, A., Korolev, A., Krämer, M., Lawson, P.,
McFarquhar, G., Ulanowski, Z., and Um, J.: Cloud Ice Properties: In Situ
Measurement Challenges, Meteor. Mon., 58, 9.1–9.23, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0011.1, 2017.
Bechini, R. and Chandrasekar, V.: A Semisupervised Robust Hydrometeor
Classification Method for Dual-Polarization Radar Applications, J. Atmos.
Ocean. Tech., 32, 22–47, 2015.
Bechini, R., Baldini, L., and Chandrasekar, V.: Polarimetric radar
observations in the ice region of precipitating clouds at C-band and X-band radar frequencies, J. Appl. Meteorol. Clim., 52, 1147–1169,
https://doi.org/10.1175/JAMC-D-12-055.1, 2013.
Bennett, L.: NCAS mobile X-band radar scan data from 1st November 2016 to
4th June 2018 deployed on long-term observations at the Chilbolton Facility
for Atmospheric and Radio Research (CFARR), Hampshire, UK, Centre for
Environmental Data Analysis, https://doi.org/10.5285/ffc9ed384aea471dab35901cf62f70be, 2020.
Besic, N., Figueras i Ventura, J., Grazioli, J., Gabella, M., Germann, U., and Berne, A.: Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach, Atmos. Meas. Tech., 9, 4425–4445, https://doi.org/10.5194/amt-9-4425-2016, 2016.
Besic, N., Gehring, J., Praz, C., Figueras i Ventura, J., Grazioli, J., Gabella, M., Germann, U., and Berne, A.: Unraveling hydrometeor mixtures in polarimetric radar measurements, Atmos. Meas. Tech., 11, 4847–4866, https://doi.org/10.5194/amt-11-4847-2018, 2018.
Bringi, V. N. and Chandrasekar, V. : Polarimetric Doppler Weather Radar:
Principles and Applications, Cambridge University Press, UK, 662 pp., 2001.
Bringi, V. N., Chandrasekar, V., Balakrishnan, N., and Zrnić, D. S.: An examination of propagation effects in rainfall on radar measurements at microwave frequencies, J. Atmos. Ocean. Tech., 7, 829–840, 1990.
Crosier, J., Bower, K. N., Choularton, T. W., Westbrook, C. D., Connolly, P. J., Cui, Z. Q., Crawford, I. P., Capes, G. L., Coe, H., Dorsey, J. R., Williams, P. I., Illingworth, A. J., Gallagher, M. W., and Blyth, A. M.: Observations of ice multiplication in a weakly convective cell embedded in supercooled mid-level stratus, Atmos. Chem. Phys., 11, 257–273, https://doi.org/10.5194/acp-11-257-2011, 2011.
Desgraupes, B.: ClusterCrit: Clustering Indices, R Package Version 1.2.3.,
available at: https://cran.r-project.org/web/packages/clusterCrit/
(last access: 6 September 2017), 2013.
FAAM (Facility for Airborne Atmospheric Measurements), NERC (Natural Environment Research Council), and Met Office: FAAM C013 Instrument Test flight: Airborne atmospheric measurements from core and non-core instrument suites on board the BAE-146 aircraft, Centre for Environmental Data Analysis, available at:
http://catalogue.ceda.ac.uk/uuid/b1c81845ad294f8399f9b564da59c68c (last access: 25 January 2021), 2017.
FAAM, NERC, and Met Office: FAAM C076 PICASSO flight: Airborne atmospheric
measurements from core and non-core instrument suites on board the BAE-146
aircraft, Centre for Environmental Data Analysis, available at:
http://catalogue.ceda.ac.uk/uuid/dbbf8c12f3ad48309829735f7f2e6359 (last access: 25 January 2021), 2018a.
FAAM, NERC, and Met Office: FAAM C081 PICASSO flight: Airborne atmospheric
measurements from core and non-core instrument suites on board the BAE-146
aircraft, Centre for Environmental Data Analysis, available at:
http://catalogue.ceda.ac.uk/uuid/64c9279112bb4e0cadb6adaebf1141eb (last access: 25 January 2021), 2018b.
FAAM, NERC, and Met Office: FAAM C082 PICASSO flight: Airborne atmospheric
measurements from core instrument suite on board the BAE-146 aircraft.
Centre for Environmental Data Analysis, available at:
http://catalogue.ceda.ac.uk/uuid/25b2a346c6f24032ba746b9dc852ff75 (last access: 25 January 2021), 2018c.
Field, P. R., Heymsfield, A. J., and Bansemer, A.: Shattering and Particle
Interarrival Times Measured by Optical Array Probes in Ice Clouds, J. Atmos.
Ocean. Tech., 23, 1357–1371, https://doi.org/10.1175/JTECH1922.1, 2006.
Giangrande, S. E. and Ryzhkov, A. V.: Estimation of rainfall based on the
results of polarimetric echo classification, J. Appl. Meteorol. Clim., 47,
2445–2462, 2008.
Grazioli, J., Tuia, D., and Berne, A.: Hydrometeor classification from polarimetric radar measurements: a clustering approach, Atmos. Meas. Tech., 8, 149–170, https://doi.org/10.5194/amt-8-149-2015, 2015.
Griffin, E. M., Schuur, T. J., and Ryzhkov, A. V.: A Polarimetric Analysis of
Ice Microphysical Processes in Snow, Using Quasi-Vertical Profiles, J. Appl.
Meteorol. Clim., 57, 31–50, https://doi.org/10.1175/JAMC-D-17-0033.1, 2018.
Hall, M. P. M., Goddard, J. W., and Cherry, S. M.: Identification of hydrometeors and other targets by dual-polarization radar, Radio Sci., 19, 132–140, 1984.
Hämäläinen, J., Jauhiainen, S., and Kärkkäinen, T.:
Comparison of Internal Clustering Validation Indices for Prototype-Based
Clustering, Algorithms, 10, 105, https://doi.org/10.3390/a10030105, 2017.
Hancock, R.: Notes on Bayesian Information Criterion Calculation for X-Means Clustering, GitHub, available at: https://github.com/bobhancock/goxmeans/blob/master/doc/BIC_notes.pdf (last access: 25 January 2021), 2012.
Hendry, A. and Antar, Y. M. M.: Precipitation particle identification with
centimeter wavelength dual-polarization radars, Radio Sci., 19, 115–122,
1984.
Heymsfield, A. J. and Parrish, J. L.: A Computational Technique for Increasing the Effective Sampling Volume of the PMS Two-Dimensional Particle Size Spectrometer, J. Appl. Meteorol., 17, 1566–1572,
https://doi.org/10.1175/1520-0450(1978)017<1566:ACTFIT>2.0.CO;2, 1978.
Johnson, B. T., Petty, G. W., and Skofronick-Jackson, G.: Microwave Properties of Ice-Phase Hydrometeors for Radar and Radiometers: Sensitivity to Model Assumptions, J. Appl. Meteorol. Clim., 51, 2152–2171,
https://doi.org/10.1175/JAMC-D-11-0138.1, 2012.
Keat, W. J. and Westbrook, C. D.: Revealing layers of pristine oriented
crystals embedded within deep ice clouds using differential reflectivity and
the copolar correlation coefficient, J. Geophys. Res.-Atmos., 122, 11737–11759, https://doi.org/10.1002/2017JD026754, 2017.
Korolev, A. V.: Reconstruction of the sizes of spherical particles from
their shadow images. Part I: Theoretical considerations, J. Atmos. Ocean. Tech., 24, 376–389, https://doi.org/10.1175/JTECH1980.1, 2007.
Kumjian, M. R., Ryzhkov, A. V., Reeves, H. D., and Schuur, T. J.: A
dual-polarization radar signature of hydrometeor refreezing in winter
storms, J. Appl. Meteorol. Clim., 52, 2549–2566, 2013.
Kumjian, M. R., Mishra, S., Giangrande, S. E., Toto, T., Ryzhkov, A. V., and
Bansemer, A.: Polarimetric radar and aircraft observations of saggy bright
bands during MC3E, J. Geophys. Res.-Atmos., 121, 3584–3607,
https://doi.org/10.1002/2015JD024446, 2016.
Liu, H. and Chandrasekar, V.: Classification of hydrometeors based on
polarimetric measurements: Development of fuzzy logic and neuronfuzzy
systems, and in situ verification, J. Atmos. Ocean. Tech., 17, 140–164,
2000.
Met Office: NWP-UKV: Met Office UK Atmospheric High Resolution Model
data, Centre for Environmental Data Analysis, date of citation, available at:
https://catalogue.ceda.ac.uk/uuid/f47bc62786394626b665e23b658d385f (last access: 25 January 2021), 2016.
Murphy, A. M., Ryzhkov, A., and Zhang, P.: Columnar Vertical Profile
(CVP) Methodology for Validating Polarimetric Radar Retrievals in Ice Using
In Situ Aircraft Measurements, J. Atmos. Ocean. Tech., 37, 1623–1642, https://doi.org/10.1175/JTECH-D-20-0011.1, 2020.
Neely III, R. R., Bennett, L., Blyth, A., Collier, C., Dufton, D., Groves, J., Walker, D., Walden, C., Bradford, J., Brooks, B., Addison, F. I., Nicol, J., and Pickering, B.: The NCAS mobile dual-polarisation Doppler X-band weather radar (NXPol), Atmos. Meas. Tech., 11, 6481–6494, https://doi.org/10.5194/amt-11-6481-2018, 2018.
Ng, A., Jordan, M., and Weiss, Y.: On spectral clustering: analysis and an
algorithm, in: Advances in Neural Information Processing Systems,
edited by: Dietterich, T., Becker, S., and Ghahramani, Z., MIT Press,
Cambridge, 14, 849–856, 2002.
Niemelä, M., Ayrämo, S., and Kärkkäinen, T.: Comparison of
Cluster Validation Indices with Missing Data, in: ESANN 2018 proceedings,
European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning, Bruges, Belgium, 25–27 April 2018, i6doc.com publ.,
ISBN 978-287587047-6, available at: http://www.i6doc.com/en/ (last access: 25 January 2021), 2018.
O'Shea, S., Crosier, J., Dorsey, J., Gallagher, L., Schledewitz, W., Bower, K., Schlenczek, O., Borrmann, S., Cotton, R., Westbrook, C., and Ulanowski, Z.: Characterising optical array particle imaging probes: implications for small ice crystal observations, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2020-265, in review, 2020.
O'Shea, S. J., Crosier, J., Dorsey, J., Schledewitz, W., Crawford, I., Borrmann, S., Cotton, R., and Bansemer, A.: Revisiting particle sizing using greyscale optical array probes: evaluation using laboratory experiments and synthetic data, Atmos. Meas. Tech., 12, 3067–3079, https://doi.org/10.5194/amt-12-3067-2019, 2019.
Pelleg, D. and Moore, A. W.: X-means: extending K-means with efficient
estimation of the number of clusters, in: Proceedings of the 17th
International Conference on Machine Learning (ICML), Stanford, USA,
727–734, 2000.
Ribaud, J.-F., Machado, L. A. T., and Biscaro, T.: X-band dual-polarization radar-based hydrometeor classification for Brazilian tropical precipitation systems, Atmos. Meas. Tech., 12, 811–837, https://doi.org/10.5194/amt-12-811-2019, 2019.
Roberto, N., Baldini, L., Adirosi, E., Facheris, L., Cuccoli, F., Lupidi,
A., and Garzelli, A. A.: A Support Vector Machine Hydrometeor Classification
Algorithm for Dual-Polarization Radar, Atmosphere, 8, 134, https://doi.org/10.3390/atmos8080134, 2017.
Ryzhkov, A., Zhang, P., Reeves, H., Kumjian, M., Tschallener, T., Trömel, S., and Simmer, C.: Quasi-vertical profiles–A new way to look at polarimetric radar data, J. Atmos. Ocean. Tech., 33, 551–562,
https://doi.org/10.1175/JTECH-D-15-0020.1, 2016.
Ryzhkov, A. V. and Zrnic D. S.: Radar Polarimetry for Weather Observation.
Springer Atmospheric Sciences, Springer International Publishing,
https://doi.org/10.1007/978-3-030-05093-1, 2019.
Shi, J. and Malik, J.: Normalized cuts and image segmentation, IEEE T. Pattern Anal., 22, 888–905, 2000.
Steinhaus, H.: Sur la division des corps matériels en parties, Bulletin de l'Académie Polonaise des Sciences. Classe 3, 12, 801–804, 1956.
Straka, J. M.: Hydrometeor fields in a supercell storm as deduced from
dual-polarization radar, 18th Conf. on Severe Local Storms, San
Francisco, Amer. Meteor. Soc., Preprints, 551–554, 1996.
Straka, J. M. and Zrnić, D.S.: An algorithm to deduce hydrometeor types and
contents from multiparameter radar data, 26th Int. Conf. on Radar
Meteorology, Norman, OK, Amer. Meteor. Soc., Preprints, 513–516, 1993.
Straka, J. M., Zrnić, D. S., and Ryzhkov, A. V.: Bulk hydrometeor
classification and quantification using polarimetric radar data: Synthesis
of relations, J. Appl. Meteorol., 39, 1341–1372, 2000.
Testud, J., Le Bouar, E., Obligis, E., and Ali-Mehenni, M.: The Rain Profiling Algorithm Applied to Polarimetric Weather Radar, J. Atmos. Ocean. Tech., 17, 332–356, https://doi.org/10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2, 2000.
Tiira, J. and Moisseev, D.: Unsupervised classification of vertical profiles of dual polarization radar variables, Atmos. Meas. Tech., 13, 1227–1241, https://doi.org/10.5194/amt-13-1227-2020, 2020.
Trömel, S., Kumjian, M., Ryzhkov, A., and Simmer, C.: Backscatter
differential phase–Estimation and variability, J. Appl. Meteorol. Clim.,
52, 2529–2548, https://doi.org/10.1175/JAMC-D-13-0124.1, 2013.
Trömel, S., Ryzhkov, A., Zhang, P., and Simmer, C.: Investigations of
Backscatter Differential Phase in the Melting Layer, J. Appl. Meteorol.
Clim., 53, 2344–2359, https://doi.org/10.1175/JAMC-D-14-0050.1, 2014.
Vivekanandan, J., Ellis, S. M., Oye, R., Zrnic, D. S., Ryzhkov, A. V., and
Straka, J.: Cloud microphysics retrieval using S-band dual-polarization
radar measurements, B. Am. Meteorol. Soc., 80, 381–388, https://doi.org/10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2, 1999.
von Luxburg, U.: A tutorial on spectral clustering, Stat. Comput., 17, 395–416, 2007.
Wang, H., Ran, Y., Deng, Y., and Wang, X.: Study on deep-learning-based
identification of hydrometeors observed by dual polarization Doppler weather
radars, EURASIP J. Wirel. Comm., 2017, 179, https://doi.org/10.1186/s13638-017-0965-5, 2017.
Wen, G., Protat, A., May, P. T., Wang, X., and Moran, W.: A cluster-based
method for hydrometeor classification using polarimetric variables. Part I:
Interpretation and analysis, J. Atmos. Ocean. Tech., 32, 1320–1340, https://doi.org/10.1175/JTECH-D-13-00178.1, 2015.
Wold, S.: Pattern Recognition by Mean of Disjoint Principal Components
Models, Pattern Recogn., 8, 127–139, 1976.
Short summary
This paper presents a novel technique of data-driven hydrometeor classification (HC) from quasi-vertical profiles, where the hydrometeor types are identified from an optimal number of hierarchical clusters, obtained recursively. This data-driven HC approach is capable of providing an optimal number of classes from dual-polarimetric weather radar observations. The embedded flexibility in the extent of granularity is the main advantage of this technique.
This paper presents a novel technique of data-driven hydrometeor classification (HC) from...