Allen, G., Hollingsworth, P., Kabbabe, K., Pitt, J. R., Mead, M. I.,
Illingworth, S., Roberts, G., Bourn, M., Shallcross, D. E., and Percival,
C. J.: The development and trial of an unmanned aerial system for the
measurement of methane flux from landfill and greenhouse gas emission
hotspots, Waste Manage., 87, 883–892, 2019. a
Barbieri, L., Kral, S. T., Bailey, S. C. C., Frazier, A. E., Jacob, J. D.,
Reuder, J., Brus, D., Chilson, P. B., Crick, C., Detweiler, C., Doddi, A.,
Elston, J., Foroutan, H., Gonzalez-Rocha, J., Greene, B. R., Guzman, M. I.,
Houston, A. L., Islam, A., Kemppinen, O., Lawrence, D., Pillar-Little, E. A.,
Ross, S. D., Sama, M. P., Schmale, D. G., Schuyler, T. J., Shankar, A.,
Smith, S. W., Waugh, S., Dixon, C., Borenstein, S., and de Boer, G.: Intercomparison of Small Unmanned Aircraft System (sUAS) Measurements for
Atmospheric Science during the LAPSE-RATE Campaign, Sensors, 19, 2179, https://doi.org/10.3390/s19092179, 2019. a, b, c
Berman, E. S., Fladeland, M., Liem, J., Kolyer, R., and Gupta, M.: Greenhouse
gas analyzer for measurements of carbon dioxide, methane, and water vapor
aboard an unmanned aerial vehicle, Sensor. Actuat. B-Chem., 169,
128–135, 2012. a
Beychok, M. R.: Fundamentals Of Stack Gas Dispersion, 4th edn.,
author-published, Newport Beach, California, USA, 2005. a, b
Bovensmann, H., Buchwitz, M., Burrows, J. P., Reuter, M., Krings, T., Gerilowski, K., Schneising, O., Heymann, J., Tretner, A., and Erzinger, J.: A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications, Atmos. Meas. Tech., 3, 781–811, https://doi.org/10.5194/amt-3-781-2010, 2010. a
Buchwitz, M., Reuter, M., Bovensmann, H., Pillai, D., Heymann, J., Schneising, O., Rozanov, V., Krings, T., Burrows, J. P., Boesch, H., Gerbig, C., Meijer, Y., and Löscher, A.: Carbon Monitoring Satellite (CarbonSat): assessment of atmospheric CO2 and CH4 retrieval errors by error parameterization, Atmos. Meas. Tech., 6, 3477–3500, https://doi.org/10.5194/amt-6-3477-2013, 2013. a
Carotenuto, F., Gualtieri, G., Miglietta, F., Riccio, A., Toscano, P.,
Wohlfahrt, G., and Gioli, B.: Industrial point source CO2 emission
strength estimation with aircraft measurements and dispersion modelling,
Environ. Monit. Assess., 190, 165, https://doi.org/10.1007/s10661-018-6531-8, 2018. a
Chiba, T., Haga, Y., Inoue, M., Kiguchi, O., Nagayoshi, T., Madokoro, H., and
Morino, I.: Measuring regional atmospheric CO2 concentrations in the
lower troposphere with a non-dispersive infrared analyzer mounted on a UAV,
Ogata Village, Akita, Japan, Atmosphere, 10, 487, https://doi.org/10.3390/atmos10090487, 2019. a
Hollenbeck, D., Nunez, G., Christensen, L. E., and Chen, Y.: Wind measurement
and estimation with small unmanned aerial systems (sUAS) using on-board mini
ultrasonic anemometers, in: 2018 International Conference on Unmanned
Aircraft Systems (ICUAS), 12–15 June 2018, Dallas (TX), USA, IEEE, 285–292, 2018. a
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and
New York, NY, USA, 2013. a
Janssens-Maenhout, G., Pinty, B., Dowell, M., Zunker, H., Andersson, E.,
Balsamo, G., Bezy, J.-L., Brunhes, T., Bösch, H., Bojkov, B., Brunner, D.,
Buchwitz, M., Crisp, D., Ciais, P., Counet, P., Dee, D., Denier van der Gon,
H., Dolman, H., Drinkwater, M., Dubovik, O., Engelen, R., Fehr, T.,
Fernandez, V., Heimann, M., Holmlund, K., Houweling, S., Husband, R., Juvyns,
O., Kentarchos, A., Landgraf, J., Lang, R., Löscher, A., Marshall, J.,
Meijer, Y., Nakajima, M., Palmer, P., Peylin, P., Rayner, P., Scholze, M.,
Sierk, B., Tamminen, J., and Veefkind, P.: Towards an operational
anthropogenic CO2 emissions monitoring and verification support capacity,
B. Am. Meteorol. Soc., 101, E1439–E1451, https://doi.org/10.1175/BAMS-D-19-0017.1, 2020. a
Khan, A., Schaefer, D., Tao, L., Miller, D. J., Sun, K., Zondlo, M. A.,
Harrison, W. A., Roscoe, B., and Lary, D. J.: Low power greenhouse gas
sensors for unmanned aerial vehicles, Remote Sens.-Basel, 4, 1355–1368, 2012. a
Krings, T., Gerilowski, K., Buchwitz, M., Reuter, M., Tretner, A., Erzinger, J., Heinze, D., Pflüger, U., Burrows, J. P., and Bovensmann, H.: MAMAP a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: retrieval algorithm and first inversions for point source emission rates, Atmos. Meas. Tech., 4, 1735–1758, https://doi.org/10.5194/amt-4-1735-2011, 2011. a
Krings, T., Neininger, B., Gerilowski, K., Krautwurst, S., Buchwitz, M., Burrows, J. P., Lindemann, C., Ruhtz, T., Schüttemeyer, D., and Bovensmann, H.: Airborne remote sensing and in situ measurements of atmospheric CO2 to quantify point source emissions, Atmos. Meas. Tech., 11, 721–739, https://doi.org/10.5194/amt-11-721-2018, 2018. a, b, c, d, e
Kubistin, D., Lindauer, M., Müller-Williams, J., and ICOS ATC: ICOS Level 1 CO2 and meteorological observations at 1 minute time resolution from station Steinkimmen 9 April 2020, https://doi.org/10.18160/PSGN-RQS6,
2020. a
Kunz, M., Lavric, J. V., Gerbig, C., Tans, P., Neff, D., Hummelgård, C., Martin, H., Rödjegård, H., Wrenger, B., and Heimann, M.: COCAP: a carbon dioxide analyser for small unmanned aircraft systems, Atmos. Meas. Tech., 11, 1833–1849, https://doi.org/10.5194/amt-11-1833-2018, 2018. a, b
Nassar, R., Hill, T. G., McLinden, C. A., Wunch, D., Jones, D., and Crisp, D.:
Quantifying CO2 emissions from individual power plants from space,
Geophys. Res. Lett., 44, 10045–10053, https://doi.org/10.1002/2017GL074702, 2017. a
Nave, C. R.: HyperPhysics,
Department of Physics and Astronomy, Georgia State University, Atlanta,
Georgia, USA, available at: http://hyperphysics.phy-astr.gsu.edu, (last access: 29 May 2020),
2017. a
Ouchi, M., Matsumi, Y., Nakayama, T., Shimizu, K., Sawada, T., Machida, T., Matsueda, H., Sawa, Y., Morino, I., Uchino, O., Tanaka, T., and Imasu, R.: Development of a balloon-borne instrument for CO2 vertical profile observations in the troposphere, Atmos. Meas. Tech., 12, 5639–5653, https://doi.org/10.5194/amt-12-5639-2019, 2019. a
Palomaki, R. T., Rose, N. T., van den Bossche, M., Sherman, T. J., and
De Wekker, S. F.: Wind estimation in the lower atmosphere using multirotor
aircraft, J. Atmos. Ocean. Tech., 34, 1183–1191,
2017.
a, b, c
Pinty, B., Janssens-Maenhout, G., M., D., Zunker, H., Brunhes, T., Ciais, P.,
Denier van der Gon, D. Dee, H., Dolman, H., M., D., Engelen, R., Heimann, M.,
Holmlund, K., Husband, R., Kentarchos, A., Meijer, Y., Palmer, P., and
Scholze, M.: An Operational Anthropogenic CO2 Emissions Monitoring and Verification Support capacity – Baseline Requirements, Model Components and Functional Architecture, European Commission Joint Research Centre, EUR 28736 EN, https://doi.org/10.2760/08644,
2017. a
Reuter, M., Buchwitz, M., Schneising, O., Krautwurst, S., O'Dell, C. W., Richter, A., Bovensmann, H., and Burrows, J. P.: Towards monitoring localized CO2 emissions from space: co-located regional CO2 and NO2 enhancements observed by the OCO-2 and S5P satellites, Atmos. Chem. Phys., 19, 9371–9383, https://doi.org/10.5194/acp-19-9371-2019, 2019. a
Sharan, M., Yadav, A. K., Singh, M., Agarwal, P., and Nigam, S.: A mathematical
model for the dispersion of air pollutants in low wind conditions,
Atmos. Environ., 30, 1209–1220, 1996. a
Shimura, T., Inoue, M., Tsujimoto, H., Sasaki, K., and Iguchi, M.: Estimation
of wind vector profile using a hexarotor unmanned aerial vehicle and its
application to meteorological observation up to 1000m above surface, J. Atmos. Ocean. Tech., 35, 1621–1631, 2018. a, b
Shusterman, A. A., Teige, V. E., Turner, A. J., Newman, C., Kim, J., and Cohen, R. C.: The BErkeley Atmospheric CO2 Observation Network: initial evaluation, Atmos. Chem. Phys., 16, 13449–13463, https://doi.org/10.5194/acp-16-13449-2016, 2016. a, b
van Leeuwen, C., Hensen, A., and Meijer, H. A.: Leak detection of CO2
pipelines with simple atmospheric CO2 sensors for carbon capture and
storage, Int. J. Greenh. Gas Cont., 19, 420–431,
2013. a, b, c
Velazco, V. A., Buchwitz, M., Bovensmann, H., Reuter, M., Schneising, O., Heymann, J., Krings, T., Gerilowski, K., and Burrows, J. P.: Towards space based verification of CO2 emissions from strong localized sources: fossil fuel power plant emissions as seen by a CarbonSat constellation, Atmos. Meas. Tech., 4, 2809–2822, https://doi.org/10.5194/amt-4-2809-2011, 2011. a