Articles | Volume 14, issue 3
https://doi.org/10.5194/amt-14-2515-2021
https://doi.org/10.5194/amt-14-2515-2021
Research article
 | 
31 Mar 2021
Research article |  | 31 Mar 2021

A method for resolving changes in atmospheric He ∕ N2 as an indicator of fossil fuel extraction and stratospheric circulation

Benjamin Birner, William Paplawsky, Jeffrey Severinghaus, and Ralph F. Keeling

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Benjamin Birner on behalf of the Authors (06 Jan 2021)  Author's response   Manuscript 
ED: Publish as is (24 Jan 2021) by Thomas Röckmann
AR by Benjamin Birner on behalf of the Authors (02 Feb 2021)  Manuscript 
Download
Short summary
The atmospheric helium-to-nitrogen ratio is a promising indicator for circulation changes in the upper atmosphere and fossil fuel burning by humans. We present a very precise analysis method to determine changes in the helium-to-nitrogen ratio of air samples. The method relies on stabilizing the gas flow to a mass spectrometer and continuous removal of reactive gases. These advances enable new insights and monitoring possibilities for anthropogenic and natural processes.