Articles | Volume 14, issue 3
Atmos. Meas. Tech., 14, 2515–2527, 2021
https://doi.org/10.5194/amt-14-2515-2021
Atmos. Meas. Tech., 14, 2515–2527, 2021
https://doi.org/10.5194/amt-14-2515-2021
Research article
31 Mar 2021
Research article | 31 Mar 2021

A method for resolving changes in atmospheric He ∕ N2 as an indicator of fossil fuel extraction and stratospheric circulation

Benjamin Birner et al.

Related authors

Gravitational separation of Ar∕N2 and age of air in the lowermost stratosphere in airborne observations and a chemical transport model
Benjamin Birner, Martyn P. Chipperfield, Eric J. Morgan, Britton B. Stephens, Marianna Linz, Wuhu Feng, Chris Wilson, Jonathan D. Bent, Steven C. Wofsy, Jeffrey Severinghaus, and Ralph F. Keeling
Atmos. Chem. Phys., 20, 12391–12408, https://doi.org/10.5194/acp-20-12391-2020,https://doi.org/10.5194/acp-20-12391-2020, 2020
Short summary
The influence of layering and barometric pumping on firn air transport in a 2-D model
Benjamin Birner, Christo Buizert, Till J. W. Wagner, and Jeffrey P. Severinghaus
The Cryosphere, 12, 2021–2037, https://doi.org/10.5194/tc-12-2021-2018,https://doi.org/10.5194/tc-12-2021-2018, 2018
Short summary

Related subject area

Subject: Gases | Technique: Laboratory Measurement | Topic: Instruments and Platforms
Identification, monitoring, and reaction kinetics of reactive trace species using time-resolved mid-infrared quantum cascade laser absorption spectroscopy: development, characterisation, and initial results for the CH2OO Criegee intermediate
Zara S. Mir, Matthew Jamieson, Nicholas R. Greenall, Paul W. Seakins, Mark A. Blitz, and Daniel Stone
Atmos. Meas. Tech., 15, 2875–2887, https://doi.org/10.5194/amt-15-2875-2022,https://doi.org/10.5194/amt-15-2875-2022, 2022
Short summary
Air pollution monitoring: development of ammonia (NH3) dynamic reference gas mixtures at nanomoles per mole levels to improve the lack of traceability of measurements
Tatiana Macé, Maitane Iturrate-Garcia, Céline Pascale, Bernhard Niederhauser, Sophie Vaslin-Reimann, and Christophe Sutour
Atmos. Meas. Tech., 15, 2703–2718, https://doi.org/10.5194/amt-15-2703-2022,https://doi.org/10.5194/amt-15-2703-2022, 2022
Short summary
Formaldehyde and glyoxal measurement deploying a selected ion flow tube mass spectrometer (SIFT-MS)
Antonia G. Zogka, Manolis N. Romanias, and Frederic Thevenet
Atmos. Meas. Tech., 15, 2001–2019, https://doi.org/10.5194/amt-15-2001-2022,https://doi.org/10.5194/amt-15-2001-2022, 2022
Short summary
Fragmentation inside proton-transfer-reaction-based mass spectrometers limits the detection of ROOR and ROOH peroxides
Haiyan Li, Thomas Golin Almeida, Yuanyuan Luo, Jian Zhao, Brett B. Palm, Christopher D. Daub, Wei Huang, Claudia Mohr, Jordan E. Krechmer, Theo Kurtén, and Mikael Ehn
Atmos. Meas. Tech., 15, 1811–1827, https://doi.org/10.5194/amt-15-1811-2022,https://doi.org/10.5194/amt-15-1811-2022, 2022
Short summary
MULTICHARME: a modified Chernin-type multi-pass cell designed for IR and THz long-path absorption measurements in the CHARME atmospheric simulation chamber
Jean Decker, Éric Fertein, Jonas Bruckhuisen, Nicolas Houzel, Pierre Kulinski, Bo Fang, Weixiong Zhao, Francis Hindle, Guillaume Dhont, Robin Bocquet, Gaël Mouret, Cécile Coeur, and Arnaud Cuisset
Atmos. Meas. Tech., 15, 1201–1215, https://doi.org/10.5194/amt-15-1201-2022,https://doi.org/10.5194/amt-15-1201-2022, 2022
Short summary

Cited articles

Arblaster, J. M., Gillett, N. P., Calvo, N., Forster, P. M., Polvani, L. M., Son, S.-W., Waugh, D. W., and Young, P. J.: Stratospheric ozone changes and climate, Chapter 4, Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project – Report No. 55. Geneva, Switzerland, 2014. 
Baggenstos, D., Häberli, M., Schmitt, J., Shackleton, S. A., Birner, B., Severinghaus, J. P., Kellerhals, T., and Fischer, H.: Earth's radiative imbalance from the Last Glacial Maximum to the present, P. Natl. Acad. Sci. USA, 116, 14881–14886, https://doi.org/10.1073/pnas.1905447116, 2019. 
Belikov, D., Sugawara, S., Ishidoya, S., Hasebe, F., Maksyutov, S., Aoki, S., Morimoto, S., and Nakazawa, T.: Three-dimensional simulation of stratospheric gravitational separation using the NIES global atmospheric tracer transport model, Atmos. Chem. Phys., 19, 5349–5361, https://doi.org/10.5194/acp-19-5349-2019, 2019. 
Bereiter, B., Shackleton, S., Baggenstos, D., Kawamura, K., and Severinghaus, J.: Mean global ocean temperatures during the last glacial transition, Nature, 553, 39–44, https://doi.org/10.1038/nature25152, 2018. 
Birner, B., Chipperfield, M. P., Morgan, E. J., Stephens, B. B., Linz, M., Feng, W., Wilson, C., Bent, J. D., Wofsy, S. C., Severinghaus, J., and Keeling, R. F.: Gravitational separation of Ar/N2 and age of air in the lowermost stratosphere in airborne observations and a chemical transport model, Atmos. Chem. Phys., 20, 12391–12408, https://doi.org/10.5194/acp-20-12391-2020, 2020. 
Download
Short summary
The atmospheric helium-to-nitrogen ratio is a promising indicator for circulation changes in the upper atmosphere and fossil fuel burning by humans. We present a very precise analysis method to determine changes in the helium-to-nitrogen ratio of air samples. The method relies on stabilizing the gas flow to a mass spectrometer and continuous removal of reactive gases. These advances enable new insights and monitoring possibilities for anthropogenic and natural processes.