Articles | Volume 14, issue 4
Atmos. Meas. Tech., 14, 2699–2716, 2021
https://doi.org/10.5194/amt-14-2699-2021
Atmos. Meas. Tech., 14, 2699–2716, 2021
https://doi.org/10.5194/amt-14-2699-2021

Research article 08 Apr 2021

Research article | 08 Apr 2021

Applying machine learning methods to detect convection using Geostationary Operational Environmental Satellite-16 (GOES-16) advanced baseline imager (ABI) data

Yoonjin Lee et al.

Viewed

Total article views: 1,100 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
703 385 12 1,100 16 13
  • HTML: 703
  • PDF: 385
  • XML: 12
  • Total: 1,100
  • BibTeX: 16
  • EndNote: 13
Views and downloads (calculated since 14 Nov 2020)
Cumulative views and downloads (calculated since 14 Nov 2020)

Viewed (geographical distribution)

Total article views: 972 (including HTML, PDF, and XML) Thereof 972 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 20 Sep 2021
Download
Short summary
Convective clouds are usually associated with intense rain that can cause severe damage, and thus it is important to accurately detect convective clouds. This study develops a machine learning model that can identify convective clouds from five temporal visible and infrared images as humans can point at convective regions by finding bright and bubbling areas. The results look promising when compared to radar-derived products, which are commonly used for detecting convection.