Articles | Volume 14, issue 4
https://doi.org/10.5194/amt-14-2699-2021
https://doi.org/10.5194/amt-14-2699-2021
Research article
 | 
08 Apr 2021
Research article |  | 08 Apr 2021

Applying machine learning methods to detect convection using Geostationary Operational Environmental Satellite-16 (GOES-16) advanced baseline imager (ABI) data

Yoonjin Lee, Christian D. Kummerow, and Imme Ebert-Uphoff

Related authors

Latent heating profiles from GOES-16 and its impacts on precipitation forecasts
Yoonjin Lee, Christian D. Kummerow, and Milija Zupanski
Atmos. Meas. Tech., 15, 7119–7136, https://doi.org/10.5194/amt-15-7119-2022,https://doi.org/10.5194/amt-15-7119-2022, 2022
Short summary
Latent heating profiles from GOES-16 and its comparison to heating from NEXRAD and GPM
Yoonjin Lee, Christian D. Kummerow, and Milija Zupanski
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-97,https://doi.org/10.5194/amt-2021-97, 2021
Preprint withdrawn
Short summary
A simplified method for the detection of convection using high-resolution imagery from GOES-16
Yoonjin Lee, Christian D. Kummerow, and Milija Zupanski
Atmos. Meas. Tech., 14, 3755–3771, https://doi.org/10.5194/amt-14-3755-2021,https://doi.org/10.5194/amt-14-3755-2021, 2021
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Deriving cloud droplet number concentration from surface-based remote sensors with an emphasis on lidar measurements
Gerald G. Mace
Atmos. Meas. Tech., 17, 3679–3695, https://doi.org/10.5194/amt-17-3679-2024,https://doi.org/10.5194/amt-17-3679-2024, 2024
Short summary
A random forest algorithm for the prediction of cloud liquid water content from combined CloudSat–CALIPSO observations
Richard M. Schulte, Matthew D. Lebsock, John M. Haynes, and Yongxiang Hu
Atmos. Meas. Tech., 17, 3583–3596, https://doi.org/10.5194/amt-17-3583-2024,https://doi.org/10.5194/amt-17-3583-2024, 2024
Short summary
Identification of ice-over-water multilayer clouds using multispectral satellite data in an artificial neural network
Sunny Sun-Mack, Patrick Minnis, Yan Chen, Gang Hong, and William L. Smith Jr.
Atmos. Meas. Tech., 17, 3323–3346, https://doi.org/10.5194/amt-17-3323-2024,https://doi.org/10.5194/amt-17-3323-2024, 2024
Short summary
A new approach to crystal habit retrieval from far-infrared spectral radiance measurements
Gianluca Di Natale, Marco Ridolfi, and Luca Palchetti
Atmos. Meas. Tech., 17, 3171–3186, https://doi.org/10.5194/amt-17-3171-2024,https://doi.org/10.5194/amt-17-3171-2024, 2024
Short summary
Multiple-scattering effects on single-wavelength lidar sounding of multi-layered clouds
Valery Shcherbakov, Frédéric Szczap, Guillaume Mioche, and Céline Cornet
Atmos. Meas. Tech., 17, 3011–3028, https://doi.org/10.5194/amt-17-3011-2024,https://doi.org/10.5194/amt-17-3011-2024, 2024
Short summary

Cited articles

Afzali Gorooh, V., Kalia, S., Nguyen, P., Hsu, K. L., Sorooshian, S., Ganguly, S., and Nemani, R. R.: Deep Neural Network Cloud-Type Classification (DeepCTC) Model and Its Application in Evaluating PERSIANN-CCS, Remote Sens., 12, 316, https://doi.org/10.3390/rs12020316, 2020. 
Bankert, R. L., Mitrescu, C., Miller, S. D., and Wade, R. H.: Comparison of GOES cloud classification algorithms employing explicit and implicit physics, J. Appl. Meteorol. Clim., 48, 1411–1421, https://doi.org/10.1175/2009JAMC2103.1, 2009. 
Bedka, K. M. and Khlopenkov, K.: A probabilistic multispectral pattern recognition method for detection of overshooting cloud tops using passive satellite imager observations, J. Appl. Meteorol. Climatol., 55, 1983–2005, https://doi.org/10.1175/JAMC-D-15-0249.1, 2016. 
Bedka, K. M., Brunner, J., Dworak, R., Feltz, W., Otkin, J., and Greenwald, T.: Objective satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients, J. Appl. Meteorol. Clim., 49, 181–202, https://doi.org/10.1175/2009JAMC2286.1, 2010. 
Bedka, K. M., Dworak, R., Brunner, J., and Feltz, W.: Validation of satellite-based objective overshooting cloud-top detection methods using CloudSat cloud profiling radar observations, J. Appl. Meteorol. Clim., 51, 1811–1822, https://doi.org/10.1175/JAMC-D-11-0131.1, 2012. 
Download
Short summary
Convective clouds are usually associated with intense rain that can cause severe damage, and thus it is important to accurately detect convective clouds. This study develops a machine learning model that can identify convective clouds from five temporal visible and infrared images as humans can point at convective regions by finding bright and bubbling areas. The results look promising when compared to radar-derived products, which are commonly used for detecting convection.