Articles | Volume 14, issue 5
https://doi.org/10.5194/amt-14-3301-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-3301-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The INFRA-EAR: a low-cost mobile multidisciplinary measurement platform for monitoring geophysical parameters
Olivier F. C. den Ouden
CORRESPONDING AUTHOR
R&D Department of Seismology and Acoustics, Royal Netherlands Meteorological Institute, De Bilt, the Netherlands
Dept. of Geoscience and Engineering, Delft University of Technology, Delft, the Netherlands
Jelle D. Assink
R&D Department of Seismology and Acoustics, Royal Netherlands Meteorological Institute, De Bilt, the Netherlands
Cornelis D. Oudshoorn
R&D Department of Observations and Data Technology, Royal Netherlands Meteorological Institute, De Bilt, the Netherlands
Dominique Filippi
Sextant Technology, Inc., Marton, New Zealand
Läslo G. Evers
R&D Department of Seismology and Acoustics, Royal Netherlands Meteorological Institute, De Bilt, the Netherlands
Dept. of Geoscience and Engineering, Delft University of Technology, Delft, the Netherlands
Related authors
No articles found.
Reinaart van Loon, Jelle D. Assink, Olaf Scholten, Brian M. Hare, Hidde Leijnse, and Aarnout J. van Delden
EGUsphere, https://doi.org/10.5194/egusphere-2025-6253, https://doi.org/10.5194/egusphere-2025-6253, 2026
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Comparing weather radar to high resolution LOFAR lightning images, we try to learn about sparkles; small-scale lightning that flash intermittently in the top of intense thunderstorms. Near sparkles, we observe much turbulence and a particular type of ice particles, called graupel. The findings support previous hypotheses regarding the physics of sparkles. Perhaps the combination of graupel and enhanced turbulence is causing electrification in cloud tops and lead to sparkles.
Cited articles
Albarbar, A., Badri, A., Sinha, J. K., and Starr, A.: Performance evaluation of MEMS accelerometers, Measurement, 42, 790–795, 2009. a
ANSYS: ANSYS Academic Research Mechanical, Release 18.1, available at:
https://www.ansys.com/academic/terms-and-conditions (last access: 16 February 2021), 2018. a
Anthony, R. E., Ringler, A. T., Wilson, D. C., and Wolin, E.: Do low-cost
seismographs perform well enough for your network? An overview of laboratory
tests and field observations of the OSOP Raspberry Shake 4D, Seismol.
Res. Lett., 90, 219–228, 2019. a
Assink, J., Averbuch, G., Shani-Kadmiel, S., Smets, P., and Evers, L.: A
seismo-acoustic analysis of the 2017 North Korean nuclear test, Seismol.
Res. Lett., 89, 2025–2033, 2018. a
Averbuch, G., Assink, J. D., and Evers, L. G.: Long-range atmospheric
infrasound propagation from subsurface sources, J. Acoust.
Soc. Am., 147, 1264–1274, 2020. a
Blanc, E., Ceranna L., Hauchecorne, A., Charlton-Perez, A., Marchetti, E., Evers, L. G., Kvaerna, T., Lastovicka, J., Eliasson, L., Crosby, N. B., Blanc-Benon, P., Le Pichon, A., Brachet, N., Pilger, C., Keckhut, P., Assink, J. D., Smets, P. S. M., Lee, C. F., Kero. J., Sinderlarova, T., Kampfer, N., Rufenacht, R., Farges, T., Millet, C., Nasholm, S. P., Gibbons, S. J., Espy, P. J., Hibbins, R. E., Heinrich, P., Ripepe, M., Khaykin, S., Mze, N., and Chum, J.: Toward an improved representation of middle atmospheric dynamics
thanks to the ARISE project, Surv. Geophys., 39, 171–225, 2018. a
Bowman, D. C. and Lees, J. M.: Infrasound in the middle stratosphere measured
with a free-flying acoustic array, Geophys. Res. Lett., 42, 10010–10017,
2015. a
Burridge, R.: The acoustics of pipe arrays, Geophys. J. Int.,
26, 53–69, 1971. a
Campus, P. and Christie, D.: Worldwide observations of infrasonic waves, in:
Infrasound monitoring for atmospheric studies, Springer, Dordrecht, the Netherlands, 185–234, 2010. a
Cornes, R. C., Dirksen, M., and Sluiter, R.: Correcting citizen-science air
temperature measurements across the Netherlands for short wave radiation
bias, Meteorol. Appl., 27, e1814, https://doi.org/10.1007/978-1-4020-9508-5_2, 2020. a
D'Alessandro, A., Luzio, D., and D'Anna, G.: Urban MEMS based seismic network for post-earthquakes rapid disaster assessment, Adv. Geosci., 40, 1–9, https://doi.org/10.5194/adgeo-40-1-2014, 2014. a, b
De Bree, H.-E.: The Microflown: An acoustic particle velocity sensor,
Acoust. Aust., 31, 91–94, 2003. a
Fang, Z., Zhao, Z., Du, L., Zhang, J., Pang, C., and Geng, D.: A new portable
micro weather station, in: 2010 IEEE 5th International Conference on
Nano/Micro Engineered and Molecular Systems, 20–23 January 2010, Xiamen, China, IEEE, 379–382, 2010. a
Formlabs: Technical Report Formlabs 3D printer, Formlabs, available at: https://media.formlabs.com/m/1aa00d88fe52d5bc/original/-ENUS-Form-3B-Manual.pdf
(last access: 16 February 2021), 2020. a
Garcia-Marti, I., de Haij, M., Noteboom, J. W., van der Schrier, G., and
de Valk, C.: Using volunteered weather observations to explore urban and
regional weather patterns in the Netherlands, AGU Fall Meeting Abstracts, 9–13 December 2019, San Fransico, CA, USA, IN22A–08, 2019. a
Gore-Tex: Technical Report Gore TEX air vents, Gore-Tex, available at: https://www.gore.com/products/gore-protective-vents-for-other-outdoor-applications
(last access: 16 February 2021), 2020. a
Grangeon, J. and Lesage, P.: A robust, low-cost and well-calibrated infrasound sensor for volcano monitoring, J. Volcanol. Geoth. Res., 387, 106668, https://doi.org/10.1016/j.jvolgeores.2019.106668, 2019. a
Green, D., Matoza, R., Vergoz, J., and Le Pichon, A.: Infrasonic propagation
from the 2010 Eyjafjallajökull eruption: Investigating the influence of
stratospheric solar tides, J. Geophys. Res.-Atmos., 117, D21202, https://doi.org/10.1029/2012JD017988, 2012. a
Grimmett, D., Plate, R., and Goad, J.: Measuring Infrasound from the Maritime
Environment, in: Infrasound Monitoring for Atmospheric Studies,
Springer, Cham, Switzerland, 173–206, 2019. a
Haak, H. W. and De Wilde, G.: Microbarograph systems for the infrasonic
detection of nuclear explosions, Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands, 1996. a
Homeijer, B., Lazaroff, D., Milligan, D., Alley, R., Wu, J., Szepesi, M.,
Bicknell, B., Zhang, Z., Walmsley, R., and Hartwell, P.: Hewlett packard's
seismic grade MEMS accelerometer, in: 2011 IEEE 24th International Conference
on Micro Electro Mechanical Systems, 23–27 January 2011, Cancun, Mexico, IEEE, 585–588, 2011. a
Homeijer, B. D., Milligan, D. J., and Hutt, C. R.: A brief test of the
hewlett-packard mems seismic accelerometer, US Geological Survey Open-file
Report, https://doi.org/10.3133/ofr20141047, 2014. a
Hons, M., Stewart, R., Lawton, D., Bertram, M., and Hauer, G.: Field data
comparisons of MEMS accelerometers and analog geophones, The Leading Edge,
27, 896–903, 2008. a
Huang, Q.-A., Qin, M., Zhang, Z., Zhou, M., Gu, L., Zhu, H., Hu, D., Hu, Z.,
Xu, G., and Liu, Z.: Weather station on a chip, in: SENSORS, 22–24 October 2003, Toronto, ON, Canada, IEEE, vol. 2, 1106–1113, 2003. a
Johari, H.: Development of MEMS sensors for measurements of pressure, relative humidity, and temperature, PhD thesis, Worcester Polytechnic Institute, available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.594.7980&rep=rep1&type=pdf (last access: 16 February 2021), 2003. a
KNMI: Netherlands Seismic and Acoustic Network, Royal Netherlands
Meteorological Institute (KNMI), Other/Seismic Network [data set],
https://doi.org/10.21944/e970fd34-23b9-3411-b366-e4f72877d2c5, 1993. a, b
Laine, J. and Mougenot, D.: Benefits of MEMS based seismic accelerometers for
oil exploration, in: TRANSDUCERS 2007–2007 International Solid-State Sensors, Actuators and Microsystems Conference, 10–14 June 2007, Lyon, France, IEEE, 1473–1477, https://doi.org/10.1109/SENSOR.2007.4300423, 2007. a, b
Lammel, G.: The future of MEMS sensors in our connected world, in: 2015 28th
IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 18–22 January 2015, Estoril, Portugal, IEEE, 61–64, https://doi.org/10.1109/MEMSYS.2015.7050886, 2015. a
Ma, R.-H., Wang, Y.-H., and Lee, C.-Y.: Wireless remote weather monitoring
system based on MEMS technologies, Sensors, 11, 2715–2727, 2011. a
Manjiyani, Z. A. A., Jacob, R. T., Keerthan Kumar, R., and Varghese, B.: Development of MEMS based 3-axis accelerometer for hand movement monitoring, International Journal of Computer Science and Engineering Communications, 2, 87–92, 2014. a
Manobianco, J. and Short, D. A.: On the Utility of Airborne MEMS for Improving Meteorological Analysis and Forecasting, in: 2001 International Conference on Modeling and Simulation of Microsystems, 19–21 March 2001, Hilton Head Island, SC, USA, 342–345, 2001. a
Marty, J.: The IMS infrasound network: current status and technological
developments, in: Infrasound Monitoring for Atmospheric Studies,
Springer, 3–62, https://doi.org/10.1007/978-3-319-75140-5_1, 2019. a, b
Milligan, D. J., Homeijer, B. D., and Walmsley, R. G.: An ultra-low noise MEMS accelerometer for seismic imaging, in: SENSORS, 28–31 October 2011, Limerick, Ireland, IEEE, 1281–1284, https://doi.org/10.1109/ICSENS.2011.6127185, 2011. a
Nief, G., Olivier, N., Olivier, S., and Hue, A.: New Optical Microbarometer,
in: AGU Fall Meeting Abstracts, 11–15 December 2017, New Orleans, Louisiana, USA, vol. 2017, A21A–2150, 2017. a
Nief, G., Talmadge, C., Rothman, J., and Gabrielson, T.: New generations of
infrasound sensors: technological developments and calibration, in:
Infrasound Monitoring for Atmospheric Studies, Springer, 63–89, https://doi.org/10.1007/978-3-319-75140-5_2, 2019. a, b
Nishimura, R., Cui, Z., and Suzuki, Y.: Portable infrasound monitoring device
with multiple MEMS pressure sensors, in: International Congress on Acoustics
(ICA), 3–9 September 2019, Aachen, Germany, 1498–1505, 2019. a
Poler, G., Garcia, R. F., Bowman, D. C., and Martire, L.: Infrasound and
Gravity Waves Over the Andes Observed by a Pressure Sensor on Board a
Stratospheric Balloon, J. Geophys. Res.-Atmos., 125,
e2019JD031565, https://doi.org/10.1029/2019JD031565, 2020. a
Ponceau, D. and Bosca, L.: Low-noise broadband microbarometers, in: Infrasound monitoring for atmospheric studies, Springer, 119–140, https://doi.org/10.1007/978-1-4020-9508-5_4, 2010. a, b
Raspet, R., Yu, J., and Webster, J.: Low frequency wind noise contributions in measurement microphones, J. Acoust. Soc. Am.,
123, 1260–1269, 2008. a
Raspet, R., Abbott, J.-P., Webster, J., Yu, J., Talmadge, C., Alberts II, K.,
Collier, S., and Noble, J.: New systems for wind noise reduction for
infrasonic measurements, in: Infrasound Monitoring for Atmospheric Studies, Springer, 91–124, https://doi.org/10.1007/978-3-319-75140-5_3, 2019. a, b, c, d
RBOOM: Specifications for: Raspberry Boom (RBOOM) and “Shake and Boom”
(RS&BOOM), available at: https://manual.raspberryshake.org/_downloads/SpecificationsforBoom_SnB.pdf (last access: 16 February 2021),
2017. a
Richiardone, R.: The transfer function of a differential microbarometer,
J. Atmos. Ocean. Tech., 10, 624–628, 1993. a
Shani-Kadmiel, S., Assink, J. D., Smets, P. S., and Evers, L. G.:
Seismoacoustic coupled signals from earthquakes in central Italy: Epicentral
and secondary sources of infrasound, Geophys. Res. Lett., 45,
427–435, 2018. a
Slad, G. W. and Merchant, B. J.: Chaparral Model 60 infrasound sensor
evaluation, Technical Report, Sandia report, SAND2016–1902, Sandia National Laboratories, Albuquerque, New Mexico, USA, 2016. a
Smink, M. M., Assink, J. D., Bosveld, F. C., Smets, P. S., and Evers, L. G.: A Three-Dimensional Array for the Study of Infrasound Propagation Through the
Atmospheric Boundary Layer, J. Geophys. Res.-Atmos.,
124, 9299–9313, 2019. a
Speller, K. E. and Yu, D.: A low-noise MEMS accelerometer for unattended ground sensor applications, in: Unattended/Unmanned Ground, Ocean, and Air Sensor Technologies and Applications VI, International Society for Optics and Photonics, vol. 5417, 63–72, https://doi.org/10.1117/12.540337, 2004. a
Steinhart, J. S. and Hart, S. R.: Calibration curves for thermistors, Deep sea research and oceanographic abstracts, 15, 497–503, https://doi.org/10.1016/0011-7471(68)90057-0, 1968. a
Sutherland, L. C. and Bass, H. E.: Atmospheric absorption in the atmosphere up to 160 km, J. Acoust. Soc. Am., 115, 1012–1032,
2004. a
Texim Europe: Technical Report Texim Europe GNS2301, Texim Europe, available at: http://static6.arrow.com/aropdfconversion/c1ea3946d7c9a03073e868dd440bd5fc6bce1506/19gns2301_datasheet.pdf.pdf(last access: 16 February 2021),
2013. a
Walker, K. T. and Hedlin, M. A.: A review of wind-noise reduction
methodologies, in: Infrasound monitoring for atmospheric studies, Springer,
141–182, https://doi.org/10.1007/978-1-4020-9508-5_5, 2010. a, b
Washburn, E. W.: The dynamics of capillary flow, Phys. Rev., 17, 273, https://doi.org/10.1103/PhysRev.17.273, 1921. a
Waxler, R. and Assink, J.: Propagation modeling through realistic atmosphere
and benchmarking, in: Infrasound Monitoring for Atmospheric Studies, Springer, 509–549, https://doi.org/10.1007/978-3-319-75140-5_15, 2019. a
Wessel, P., Smith, W. H., Scharroo, R., Luis, J., and Wobbe, F.: Generic
mapping tools: improved version released, Eos, 94, 409–410, 2013. a
Wyngaard, J. and Kosovic, B.: Similarity of structure-function parameters in
the stably stratified boundary layer, Bound.-Lay. Meteorol., 71,
277–296, 1994. a
Zirpel, M., Kraan, W., and Mastboom, P.-P.: Operationele versterkers: een
verzameling schakelingen en formules voor de toepassing van operationele
versterkers, Wolters Kluwer N.V., Alphen aan den Rijn, the Netherlands and Philadelphia, USA, 1978. a
Zou, X., Thiruvenkatanathan, P., and Seshia, A. A.: A seismic-grade resonant
MEMS accelerometer, J. Microelectromech. S., 23, 768–770,
2014. a