Articles | Volume 14, issue 5 
            
                
                    
            
            
            https://doi.org/10.5194/amt-14-3501-2021
                    © Author(s) 2021. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-3501-2021
                    © Author(s) 2021. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
Eddies in motion: visualizing boundary-layer turbulence above an open boreal peatland using UAS thermal videos
Pavel Alekseychik
CORRESPONDING AUTHOR
                                            
                                    
                                            Bioeconomy and Environment, Natural Resources Institute Finland,
00790 Helsinki, Finland
                                        
                                    
                                            Institute for Atmospheric and Earth System Research/Physics,
Faculty of Science, University of Helsinki, P.O. Box 68, 00014 Helsinki, Finland
                                        
                                    Gabriel Katul
                                            Nicholas School of the Environment, Duke University, Durham, NC, USA
                                        
                                    
                                            Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
                                        
                                    Ilkka Korpela
                                            Department of Forest Sciences, University of Helsinki, P.O. Box 27,
00014 Helsinki, Finland
                                        
                                    Samuli Launiainen
                                            Bioeconomy and Environment, Natural Resources Institute Finland,
00790 Helsinki, Finland
                                        
                                    Related authors
Olli-Pekka Tikkasalo, Olli Peltola, Pavel Alekseychik, Juha Heikkinen, Samuli Launiainen, Aleksi Lehtonen, Qian Li, Eduardo Martínez-García, Mikko Peltoniemi, Petri Salovaara, Ville Tuominen, and Raisa Mäkipää
                                    Biogeosciences, 22, 1277–1300, https://doi.org/10.5194/bg-22-1277-2025, https://doi.org/10.5194/bg-22-1277-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                The emissions of greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) were measured from a clear-cut peatland forest site. The measurements covered the whole year of 2022, which was the second growing season after the clear-cut. The site was a strong GHG source, and the highest emissions came from CO2, followed by N2O and CH4. A statistical model that included information on different surfaces at the site was developed to unravel surface-type-specific GHG fluxes.
                                            
                                            
                                        Pavel Alekseychik, Aino Korrensalo, Ivan Mammarella, Samuli Launiainen, Eeva-Stiina Tuittila, Ilkka Korpela, and Timo Vesala
                                    Biogeosciences, 18, 4681–4704, https://doi.org/10.5194/bg-18-4681-2021, https://doi.org/10.5194/bg-18-4681-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                Bogs of northern Eurasia represent a major type of peatland ecosystem and contain vast amounts of carbon, but carbon balance monitoring studies on bogs are scarce. The current project explores 6 years of carbon balance data obtained using the state-of-the-art eddy-covariance technique at a Finnish bog Siikaneva. The results reveal relatively low interannual variability indicative of ecosystem resilience to both cool and hot summers and provide new insights into the seasonal course of C fluxes.
                                            
                                            
                                        Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
                                    Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
                                            
                                            
                                        Jere Kaivosoja, Samuli Launiainen, and Heli Peltola
                                    ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-2-W2-2025, 89–94, https://doi.org/10.5194/isprs-annals-X-2-W2-2025-89-2025, https://doi.org/10.5194/isprs-annals-X-2-W2-2025-89-2025, 2025
                            Olli-Pekka Tikkasalo, Olli Peltola, Pavel Alekseychik, Juha Heikkinen, Samuli Launiainen, Aleksi Lehtonen, Qian Li, Eduardo Martínez-García, Mikko Peltoniemi, Petri Salovaara, Ville Tuominen, and Raisa Mäkipää
                                    Biogeosciences, 22, 1277–1300, https://doi.org/10.5194/bg-22-1277-2025, https://doi.org/10.5194/bg-22-1277-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                The emissions of greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) were measured from a clear-cut peatland forest site. The measurements covered the whole year of 2022, which was the second growing season after the clear-cut. The site was a strong GHG source, and the highest emissions came from CO2, followed by N2O and CH4. A statistical model that included information on different surfaces at the site was developed to unravel surface-type-specific GHG fluxes.
                                            
                                            
                                        Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
                                    Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024, https://doi.org/10.5194/hess-28-4643-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                We used hydrological models, field measurements, and satellite-based data to study the soil moisture dynamics in a subarctic catchment. The role of groundwater was studied with different ways to model the groundwater dynamics and via comparisons to the observational data. The choice of groundwater model was shown to have a strong impact, and representation of lateral flow was important to capture wet soil conditions. Our results provide insights for ecohydrological studies in boreal regions.
                                            
                                            
                                        Mohammad Allouche, Vladislav I. Sevostianov, Einara Zahn, Mark A. Zondlo, Nelson Luís Dias, Gabriel G. Katul, Jose D. Fuentes, and Elie Bou-Zeid
                                    Atmos. Chem. Phys., 24, 9697–9711, https://doi.org/10.5194/acp-24-9697-2024, https://doi.org/10.5194/acp-24-9697-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                The significance of surface–atmosphere exchanges of aerosol species to atmospheric composition is underscored by their rising concentrations that are modulating the Earth's climate and having detrimental consequences for human health and the environment. Estimating these exchanges, using field measurements, and offering alternative models are the aims here. Limitations in measuring some species misrepresent their actual exchanges, so our proposed models serve to better quantify them.
                                            
                                            
                                        Boris Ťupek, Aleksi Lehtonen, Alla Yurova, Rose Abramoff, Bertrand Guenet, Elisa Bruni, Samuli Launiainen, Mikko Peltoniemi, Shoji Hashimoto, Xianglin Tian, Juha Heikkinen, Kari Minkkinen, and Raisa Mäkipää
                                    Geosci. Model Dev., 17, 5349–5367, https://doi.org/10.5194/gmd-17-5349-2024, https://doi.org/10.5194/gmd-17-5349-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                Updating the Yasso07 soil C model's dependency on decomposition with a hump-shaped Ricker moisture function improved modelled soil organic C (SOC) stocks in a catena of mineral and organic soils in boreal forest. The Ricker function, set to peak at a rate of 1 and calibrated against SOC and CO2 data using a Bayesian approach, showed a maximum in well-drained soils. Using SOC and CO2 data together with the moisture only from the topsoil humus was crucial for accurate model estimates.
                                            
                                            
                                        Jari-Pekka Nousu, Matthieu Lafaysse, Giulia Mazzotti, Pertti Ala-aho, Hannu Marttila, Bertrand Cluzet, Mika Aurela, Annalea Lohila, Pasi Kolari, Aaron Boone, Mathieu Fructus, and Samuli Launiainen
                                    The Cryosphere, 18, 231–263, https://doi.org/10.5194/tc-18-231-2024, https://doi.org/10.5194/tc-18-231-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                The snowpack has a major impact on the land surface energy budget. Accurate simulation of the snowpack energy budget is difficult, and studies that evaluate models against energy budget observations are rare. We compared predictions from well-known models with observations of energy budgets, snow depths and soil temperatures in Finland. Our study identified contrasting strengths and limitations for the models. These results can be used for choosing the right models depending on the use cases.
                                            
                                            
                                        Norbert Pirk, Kristoffer Aalstad, Sebastian Westermann, Astrid Vatne, Alouette van Hove, Lena Merete Tallaksen, Massimo Cassiani, and Gabriel Katul
                                    Atmos. Meas. Tech., 15, 7293–7314, https://doi.org/10.5194/amt-15-7293-2022, https://doi.org/10.5194/amt-15-7293-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                In this study, we show how sparse and noisy drone measurements can be combined with an ensemble of turbulence-resolving wind simulations to estimate uncertainty-aware surface energy exchange. We demonstrate the feasibility of this drone data assimilation framework in a series of synthetic and real-world experiments. This new framework can, in future, be applied to estimate energy and gas exchange in heterogeneous landscapes more representatively than conventional methods.
                                            
                                            
                                        Matti Räsänen, Mika Aurela, Ville Vakkari, Johan P. Beukes, Juha-Pekka Tuovinen, Pieter G. Van Zyl, Miroslav Josipovic, Stefan J. Siebert, Tuomas Laurila, Markku Kulmala, Lauri Laakso, Janne Rinne, Ram Oren, and Gabriel Katul
                                    Hydrol. Earth Syst. Sci., 26, 5773–5791, https://doi.org/10.5194/hess-26-5773-2022, https://doi.org/10.5194/hess-26-5773-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                The productivity of semiarid grazed grasslands is linked to the variation in rainfall and transpiration. By combining carbon dioxide and water flux measurements, we show that the annual transpiration is nearly constant during wet years while grasses react quickly to dry spells and drought, which reduce transpiration. The planning of annual grazing strategies could consider the early-season rainfall frequency that was linked to the portion of annual transpiration.
                                            
                                            
                                        Stefano Manzoni, Simone Fatichi, Xue Feng, Gabriel G. Katul, Danielle Way, and Giulia Vico
                                    Biogeosciences, 19, 4387–4414, https://doi.org/10.5194/bg-19-4387-2022, https://doi.org/10.5194/bg-19-4387-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                Increasing atmospheric carbon dioxide (CO2) causes leaves to close their stomata (through which water evaporates) but also promotes leaf growth. Even if individual leaves save water, how much will be consumed by a whole plant with possibly more leaves? Using different mathematical models, we show that plant stands that are not very dense and can grow more leaves will benefit from higher CO2 by photosynthesizing more while adjusting their stomata to consume similar amounts of water.
                                            
                                            
                                        Pavel Alekseychik, Aino Korrensalo, Ivan Mammarella, Samuli Launiainen, Eeva-Stiina Tuittila, Ilkka Korpela, and Timo Vesala
                                    Biogeosciences, 18, 4681–4704, https://doi.org/10.5194/bg-18-4681-2021, https://doi.org/10.5194/bg-18-4681-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                Bogs of northern Eurasia represent a major type of peatland ecosystem and contain vast amounts of carbon, but carbon balance monitoring studies on bogs are scarce. The current project explores 6 years of carbon balance data obtained using the state-of-the-art eddy-covariance technique at a Finnish bog Siikaneva. The results reveal relatively low interannual variability indicative of ecosystem resilience to both cool and hot summers and provide new insights into the seasonal course of C fluxes.
                                            
                                            
                                        Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
                                    Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
                                            
                                            
                                        Cited articles
                        
                        Adrian, R. J.: Hairpin vortex organization in wall turbulence, Phys.
Fluids, 19, 041301, https://doi.org/10.1063/1.2717527, 2007. 
                    
                
                        
                        Albertson, J. D., Parlange, M. B., Katul, G. G., Chu, C., Stricker, H., and
Tyler, S.: Sensible heat flux from arid regions: A simple flux-variance
method, Water Resour. Res., 31, 969–973, 1995. 
                    
                
                        
                        Alekseychik, P. K.: Codes to analyze atmospheric boundary layer turbulence based on thermal videos (Version 1.0), Zenodo [code], https://doi.org/10.5281/zenodo.4019155, 2020a. 
                    
                
                        
                        Alekseychik, P. K.: Georeferenced drone thermal video and related data, recorded on 6 and 28 August 2019 in Siikaneva peatland (Version 1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.4019321, 2020b. 
                    
                
                        
                        Alekseychik, P. K.: Turbulence on natural peatland surface visualized using thermal videos (Version 1.0), Zenodo, https://doi.org/10.5281/zenodo.4019175, 2020c. 
                    
                
                        
                        Alekseychik, P. K., Korrensalo, A., Mammarella, I., Vesala, T., and Tuittila,
E. S.: Relationship between aerodynamic roughness length and bulk sedge leaf
area index in a mixed-species boreal mire complex, Geophys. Res.
Lett., 44, 5836–5843, https://doi.org/10.1002/2017GL073884, 2017a. 
                    
                
                        
                        Alekseychik, P., Mammarella, I., Karpov, D., Dengel, S., Terentieva, I., Sabrekov, A., Glagolev, M., and Lapshina, E.: Net ecosystem exchange and energy fluxes measured with the eddy covariance technique in a western Siberian bog, Atmos. Chem. Phys., 17, 9333–9345, https://doi.org/10.5194/acp-17-9333-2017, 2017b. 
                    
                
                        
                        Christen, A. and Voogt, J.: Linking atmospheric turbulence and surfate temperature fluctuations in a street canyon, in: Proceedings of the Seventh International Conference on Urban Climate, 29 June–3 July 2009, Yokohama, Japan, 2009. 
                    
                
                        
                        Christen, A., Meier, F., and Scherer, D.: High-frequency fluctuations of
surface temperatures in an urban environment, Theor. Appl. Climatol., 108,
301–324, 2012. 
                    
                
                        
                        Chudnovsky, A., Ben-Dor, E., and Saaroni, H.: Diurnal thermal behavior of
selected urban objects using remote sensing measurements, Energ.
Buildings, 36, 1063–1074, https://doi.org/10.1016/j.enbuild.2004.01.052,
2004. 
                    
                
                        
                        Davison, D. S.: The horizontal cross–sectional shape of convective plumes, Q.
J. Roy. Meteor. Soc., 101, 463–473, 1975. 
                    
                
                        
                        Drobinski, P., Carlotti, P., Newsom, R. K., Banta, R. M., Foster, R. C., and
Redelsperger, J.: The structure of the near-neutral atmospheric surface
layer, J. Atmos. Sci., 61, 699–714, https://doi.org/10.1175/1520-0469(2004)061<0699:TSOTNA>2.0.CO;2, 2004. 
                    
                
                        
                        Dugdale, S. J., Kelleher, C., Malcolm, I. A., Caldwell, S., and Hannah, D. M.: Assessing the potential of drone-based thermal infrared
imagery for quantifying river temperature heterogeneity, Hydrol. Process. 33, 1152–1163, https://doi.org/10.1002/hyp.13395, 2019. 
                    
                
                        
                        Fang, J. and Porté-Agel, F.: Large-eddy simulation of very-large-scale
motions in the neutrally stratified atmospheric boundary layer,
Bound.-Lay. Meteorol., 155, 397–416, 2015. 
                    
                
                        
                        Frisch, A. S. and Businger, J. A.: A Study of Convective Elements in
the Atmospheric Boundary Layer, Bound.-Lay. Meteorol., 3, 301–328, 1973. 
                    
                
                        
                        Ganapathisubramani, B., Longmire, E. K., and Marusic, I.: Characteristics of
vortex packets in turbulent boundary layers, J. Fluid Mech. 478, 35–46,
2003. 
                    
                
                        
                        Garai, A. and Kleissl, J.: Air and surface temperature coupling in the
convective atmospheric boundary layer, J. Atmos. Sci., 68, 2945–2954, 2011. 
                    
                
                        
                        Garai, A. and Kleissl, J.: Interaction between coherent structures and
surface temperature and its effect on ground heat flux in an unstably
stratified boundary layer, J. Turbul., 14, 1–23,
https://doi.org/10.1080/14685248.2013.806812, 2013. 
                    
                
                        
                        Gonzalez, R. C. and Woods, R. E.: Digital Image Processing, Addison-Wesley, New York, USA, 1992. 
                    
                
                        
                        Guala, M., Hommema, S. E., and Adrian, R. J.: Large-scale and very-largescale
motions in turbulent pipe flow, J. Fluid Mech., 554, 521–542, 2006. 
                    
                
                        
                        Hoyano, A., Asano, K., and Kanamaru, T.: Analysis of the sensible heat flux
from the exterior surface of buildings using time sequential thermography,
Atmos. Environ., 33, 3941–3951, 1999. 
                    
                
                        
                        Inagaki, A., Kanda, M., Onomura, S., and Kumemura, H.: Thermal Image
Velocimetry, Bound.-Lay. Meteorol., 149, 1–18,
https://doi.org/10.1007/s10546-013-9832-z, 2013. 
                    
                
                        
                        Jeong, J., Hussain, F., Schoppa, W., and Kim, J.: Coherent structure near the
wall in a turbulent channel flow, J. Fluid Mech., 332, 185–214, 1997. 
                    
                
                        
                        Kaimal, J. C.: Translation Speed of Convective Plumes in the ASL, Q. J. Roy. Meteor. Soc., 100, 46–52 1974. 
                    
                
                        
                        Kaimal, J. C. and Businger, J. A.: Case Studies of a Convective Plume and a
DustDevil, J. Appl. Meteorol., 9, 612–620, 1970. 
                    
                
                        
                        Kaimal, J. C., Wyngaard, J. C., HAugusten, D. A., Cotè, O. R., Izumi,
Y., CAugusthy, S. J., and Readings, C. J.: Turbulence structure in
theconvective boundary layer, J. Atmos. Sci., 33, 2152–2169, 1976. 
                    
                
                        
                        Katul, G. G., Schieldge, J., Hsieh, C. I., and Vidakovic, B.: Skin
temperature perturbations induced by surface layer turbulence above a grass
surface, Water Resour. Res., 34, 1265–1274, 1998. 
                    
                
                        
                        Khalsa, J. S.: Surface-layer intermittency investigated with conditional
sampling, Bound.-Lay. Meteorol., 19, 135–153, 1980. 
                    
                
                        
                        Kim, K. C. and Adrian, R. J.: Very large-scale motion in the outer layer,
Phys. Fluids, 11, 417, https://doi.org/10.1063/1.869889, 1999. 
                    
                
                        
                        Kline, S. J., Reynolds, W. C., Schraub, R. A., and Runstadler, P. W.: The
structure of turbulent boundary layers, J. Fluid Mech., 30, 741–773, 1967. 
                    
                
                        
                        Kormann, R. and Meixner, F. X.: An Analytical Footprint ModelFor Non-Neutral
Stratification, Bound.-Lay. Meteorol., 99, 207–224,
https://doi.org/10.1023/a:1018991015119, 2001. 
                    
                
                        
                        Laima, S., Ren, H., Li, H., and Ou, J.: Numerical Simulation of Coherent
Structures in the Turbulent Boundary Layer under Diferent Stability
Conditions, Energies, 13, 1068, https://doi.org/10.3390/en13051068, 2020. 
                    
                
                        
                        Margairaz, F., Pardyjak, E. R., and Calaf, M.: Surface thermal
heterogeneities and the atmospheric boundary layer: the relevance of
dispersive fluxes, Bound.-Lay. Meteorol, 175, 369–395, 2020. 
                    
                
                        
                        Mattes, D., Haynor, D. R., Vesselle, H., Lewellen, T., and Eubank. W.
Non-rigid multimodality image registration, in: Proceedings of SPIE 4322,
Medical Imaging 2001: Image Processing, 3 July 2001, San Diego, CA, USA,
1609–1620, https://doi.org/10.1117/12.431046, 2001. 
                    
                
                        
                        Meier, F., Scherer, D., Richters, J., and Christen, A.: Atmospheric correction of thermal-infrared imagery of the 3-D urban environment acquired in oblique viewing geometry, Atmos. Meas. Tech., 4, 909–922, https://doi.org/10.5194/amt-4-909-2011, 2011. 
                    
                
                        
                        Morrison, T. J., Calaf, M., Fernando, H. J. S., Price, T. A., and Pardyjak, E. R.:
A methodology for computing spatiallyand temporally varying surface sensible
heat flux from thermal imagery, Q. J. Roy. Meteor. Soc., 143, 2616–2624,
https://doi.org/10.1002/qj.3112, 2017. 
                    
                
                        
                        Newsom, R., Calhoun, R., Ligon, D., and Allwine, J.: Linearly Organized Turbulence Structures Observed Over a Suburban Area by Dual-Doppler Lidar, Bound.-Lay. Meteorol., 127, 111–130, 2008. 
                    
                
                        
                        Owen, P. R. and Thompson, W. R.: Heat Transfer Across Rough Surfaces, J.
Fluid Mech., 15, 321–334, 1963. 
                    
                
                        
                        Paw U, K. T., Qiu, J., Su, H. B., Watanabe, T., and Brunet, Y.: Surface renewal analysis: a new method to obtain scalar ?uxes without velocity data,
Agr. Forest Meteorol., 74, 119–137, 1995. 
                    
                
                        
                        Priestley, C. H. B.: Turbulent Transfer in the Lower Atmosphere, University
of Chicago Press, Chicago, USA, 130 pp., 1959. 
                    
                
                        
                        Renieblas, G. P., Nogués, A. T., González, A. M., Gómez-Leon, N., and del Castillo, E. G.: Structural similarity index family for image
quality assessment in radiological images, J. Med. Imag., 4, 035501, https://doi.org/10.1117/1.JMI.4.3.035501, 2017. 
                    
                
                        
                        Salesky, S. T., Katul, G. G., and Chamecki, M.: Buoyancy effects on the
integral lengthscales and mean velocity profile in atmospheric surface layer
flows, Phys. Fluids, 25, 105101, https://doi.org/10.1063/1.4823747, 2013. 
                    
                
                        
                        Stull, R. B.: An Introduction to Boundary Layer Meteorology, in: Atmospheric Sciences Library, Springer, the Netherlands, https://doi.org/10.1007/978-94-009-3027-8, 2011. 
                    
                
                        
                        Styner, M., C. Brechbuehler, G. Székely, and G. Gerig: Parametric
estimate of intensity inhomogeneities applied to MRI, IEEE T.
Med. Imaging, 19, 153–165, 2000. 
                    
                
                        
                        Sugawara, H., Narita, K., and Mikami, T.: Estimation of effective thermal
property parameter on a heterogeneous urban surface, J. Meteorol. Soc. Jpn., 79, 1169–1181, 2001. 
                    
                
                        
                        Taylor, R. J.: Thermal Structures in the Lowest Layers of the Atmosphere,
Aust. J. Phys. 11, 168–176, 1958. 
                    
                
                        
                        Thielicke, W. and Stamhuis, E. J.: PIVlab – Towards User-Friendly,
Affordable and Accurate Digital Particle Image Velocimetry in MATLAB, J.
Open Res. Software, 2, e30, https://doi.org/10.5334/jors.bl, 2014. 
                    
                
                        
                        Tomkins, C. D. and Adrian, R. J.: Spanwise structure and scale growth in
turbulent boundary layers, J. Fluid Mech., 490, 37–74, 2003. 
                    
                
                        
                        Vogt, R.: Visualisation of turbulent exchange using a thermal camera, 18th
symposium on boundary layer and turbulence, 9–13 June 2008, Stockholm, Sweden, Paper no. 8B.1, 2008. 
                    
                
                        
                        Webb, E. K.: Convection mechanisms of atmospheric heat transfer from surface
to global scales, in: Proc. Second Australasian Conf. on Heat and Mass
Transfer, February 1977, Sydney, Australia, NTIS 77N30685/2, 523–539, 1977. 
                    
                
                        
                        Wilczak, J. M. and Tillman, J. E.: The three-dimensional structure of
convection in the atmospheric surface layer, J. Atmos. Sci., 37, 2424–2443,
1980. 
                    
                Short summary
            Drones with thermal cameras are powerful new tools with the potential to provide new insights into atmospheric turbulence and heat fluxes. In a pioneering experiment, a Matrice 210 drone with a Zenmuse XT2 thermal camera was used to record 10–20 min thermal videos at 500 m a.g.l. over the Siikaneva peatland in southern Finland. A method to visualize the turbulent structures and derive their parameters from thermal videos is developed. The study provides a novel approach for turbulence analysis.
            Drones with thermal cameras are powerful new tools with the potential to provide new insights...
            
         
 
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
             
             
            