Articles | Volume 14, issue 6
https://doi.org/10.5194/amt-14-4617-2021
https://doi.org/10.5194/amt-14-4617-2021
Research article
 | 
22 Jun 2021
Research article |  | 22 Jun 2021

Development and application of a United States-wide correction for PM2.5 data collected with the PurpleAir sensor

Karoline K. Barkjohn, Brett Gantt, and Andrea L. Clements

Related authors

Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments
Tongshu Zheng, Michael H. Bergin, Karoline K. Johnson, Sachchida N. Tripathi, Shilpa Shirodkar, Matthew S. Landis, Ronak Sutaria, and David E. Carlson
Atmos. Meas. Tech., 11, 4823–4846, https://doi.org/10.5194/amt-11-4823-2018,https://doi.org/10.5194/amt-11-4823-2018, 2018
Short summary
Using Low Cost Sensors to Measure Ambient Particulate Matter Concentrations and On-Road Emissions Factors
Karoline K. Johnson, Michael H. Bergin, Armistead G. Russell, and Gayle S. W. Hagler
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2015-331,https://doi.org/10.5194/amt-2015-331, 2016
Revised manuscript not accepted
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Spectral analysis approach for assessing the accuracy of low-cost air quality sensor network data
Vijay Kumar, Dinushani Senarathna, Supraja Gurajala, William Olsen, Shantanu Sur, Sumona Mondal, and Suresh Dhaniyala
Atmos. Meas. Tech., 16, 5415–5427, https://doi.org/10.5194/amt-16-5415-2023,https://doi.org/10.5194/amt-16-5415-2023, 2023
Short summary
Challenges and solutions in determining dilution ratios and emission factors from chase measurements of passenger vehicles
Ville Leinonen, Miska Olin, Sampsa Martikainen, Panu Karjalainen, and Santtu Mikkonen
Atmos. Meas. Tech., 16, 5075–5089, https://doi.org/10.5194/amt-16-5075-2023,https://doi.org/10.5194/amt-16-5075-2023, 2023
Short summary
Seasonally optimized calibrations improve low-cost sensor performance: long-term field evaluation of PurpleAir sensors in urban and rural India
Mark Joseph Campmier, Jonathan Gingrich, Saumya Singh, Nisar Baig, Shahzad Gani, Adithi Upadhya, Pratyush Agrawal, Meenakshi Kushwaha, Harsh Raj Mishra, Ajay Pillarisetti, Sreekanth Vakacherla, Ravi Kant Pathak, and Joshua S. Apte
Atmos. Meas. Tech., 16, 4357–4374, https://doi.org/10.5194/amt-16-4357-2023,https://doi.org/10.5194/amt-16-4357-2023, 2023
Short summary
Performance evaluation of portable dual-spot micro-aethalometers for source identification of black carbon aerosols: application to wildfire smoke and traffic emissions in the Pacific Northwest
Mrinmoy Chakraborty, Amanda Giang, and Naomi Zimmerman
Atmos. Meas. Tech., 16, 2333–2352, https://doi.org/10.5194/amt-16-2333-2023,https://doi.org/10.5194/amt-16-2333-2023, 2023
Short summary
Further validation of the estimates of the downwelling solar radiation at ground level in cloud-free conditions provided by the McClear service: the case of Sub-Saharan Africa and the Maldives Archipelago
William Wandji Nyamsi, Yves-Marie Saint-Drenan, Antti Arola, and Lucien Wald
Atmos. Meas. Tech., 16, 2001–2036, https://doi.org/10.5194/amt-16-2001-2023,https://doi.org/10.5194/amt-16-2001-2023, 2023
Short summary

Cited articles

Air quality index reporting: 64 Fed. Reg 42530, Office of the Federal Register, National Archives and Records Administration, Washington, DC, USA, available at: https://www.govinfo.gov/app/details/FR-1999-08-04/99-19433/summary (last access: 17 June 2021), 1991. 
Al-Thani, H., Koç, M., and Isaifan, R. J.: A review on the direct effect of particulate atmospheric pollution on materials and its mitigation for sustainable cities and societies, Environ. Sci. Pollut. R., 25, 27839–27857, https://doi.org/10.1007/s11356-018-2952-8, 2018. 
Apte, J. S., Marshall, J. D., Cohen, A. J., and Brauer, M.: Addressing Global Mortality from Ambient PM2.5, Environ. Sci. Technol., 49, 8057–8066, https://doi.org/10.1021/acs.est.5b01236, 2015. 
Ardon-Dryer, K., Dryer, Y., Williams, J. N., and Moghimi, N.: Measurements of PM2.5 with PurpleAir under atmospheric conditions, Atmos. Meas. Tech., 13, 5441–5458, https://doi.org/10.5194/amt-13-5441-2020, 2020. 
Barkjohn, K. K.: Dataset Development and Application of a United States wide correction for PM2.5 data collected with the PurpleAir sensor, U.S. EPA Office of Research and Development (ORD) [Data set], https://doi.org/10.23719/1522388, 2021. 
Download
Short summary
Although widely used, air sensor measurements are often biased. In this work we develop a correction with a relative humidity term that reduces the bias and improves consistency between different United States regions. This correction equation, along with proposed data cleaning criteria, has been applied to PurpleAir PM2.5 measurements across the US on the AirNow Fire and Smoke Map and has the potential to be successfully used in other air quality and public health applications.