Articles | Volume 14, issue 11
https://doi.org/10.5194/amt-14-7123-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-7123-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Drone measurements of surface-based winter temperature inversions in the High Arctic at Eureka
Alexey B. Tikhomirov
CORRESPONDING AUTHOR
Department of Physics and Atmospheric Science, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
Glen Lesins
Department of Physics and Atmospheric Science, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
James R. Drummond
Department of Physics and Atmospheric Science, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
Related authors
No articles found.
Paul S. Jeffery, James R. Drummond, C. Thomas McElroy, Kaley A. Walker, and Jiansheng Zou
Atmos. Meas. Tech., 18, 569–602, https://doi.org/10.5194/amt-18-569-2025, https://doi.org/10.5194/amt-18-569-2025, 2025
Short summary
Short summary
The MAESTRO instrument has been monitoring ozone and NO2 since February 2004. A new version of these data products has recently been released; however, these new products must be validated against other datasets to ensure their validity. This study presents such an assessment, using measurements from 11 satellite instruments to characterize the new MAESTRO products. In the stratosphere, good agreement is found for ozone and acceptable agreement is found for NO2 with these other datasets.
Paul S. Jeffery, James R. Drummond, Jiansheng Zou, and Kaley A. Walker
Atmos. Chem. Phys., 24, 4253–4263, https://doi.org/10.5194/acp-24-4253-2024, https://doi.org/10.5194/acp-24-4253-2024, 2024
Short summary
Short summary
The MOPITT instrument has been monitoring carbon monoxide (CO) since March 2000. This dataset has been used for many applications; however, episodic emission events, which release large amounts of CO into the atmosphere, are a major source of uncertainty. This study presents a method for identifying these events by determining measurements that are unlikely to have typically arisen. The distribution and frequency of these flagged measurements in the MOPITT dataset are presented and discussed.
Ali Jalali, Kaley A. Walker, Kimberly Strong, Rebecca R. Buchholz, Merritt N. Deeter, Debra Wunch, Sébastien Roche, Tyler Wizenberg, Erik Lutsch, Erin McGee, Helen M. Worden, Pierre Fogal, and James R. Drummond
Atmos. Meas. Tech., 15, 6837–6863, https://doi.org/10.5194/amt-15-6837-2022, https://doi.org/10.5194/amt-15-6837-2022, 2022
Short summary
Short summary
This study validates MOPITT version 8 carbon monoxide measurements over the Canadian high Arctic for the period 2006 to 2019. The MOPITT products from different detector pixels and channels are compared with ground-based measurements from the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada. These results show good consistency between the satellite and ground-based measurements and provide guidance on the usage of these MOPITT data at high latitudes.
Merritt Deeter, Gene Francis, John Gille, Debbie Mao, Sara Martínez-Alonso, Helen Worden, Dan Ziskin, James Drummond, Róisín Commane, Glenn Diskin, and Kathryn McKain
Atmos. Meas. Tech., 15, 2325–2344, https://doi.org/10.5194/amt-15-2325-2022, https://doi.org/10.5194/amt-15-2325-2022, 2022
Short summary
Short summary
The MOPITT (Measurements of Pollution in the Troposphere) satellite instrument uses remote sensing to obtain retrievals (measurements) of carbon monoxide (CO) in the atmosphere. This paper describes the latest MOPITT data product, Version 9. Globally, the number of daytime MOPITT retrievals over land has increased by 30 %–40 % compared to the previous product. The reported improvements in the MOPITT product should benefit a wide variety of applications including studies of pollution sources.
Heba S. Marey, James R. Drummond, Dylan B. A. Jones, Helen Worden, Merritt N. Deeter, John Gille, and Debbie Mao
Atmos. Meas. Tech., 15, 701–719, https://doi.org/10.5194/amt-15-701-2022, https://doi.org/10.5194/amt-15-701-2022, 2022
Short summary
Short summary
In this study, an analysis has been performed to understand the improvements in observational coverage over Canada in the new MOPITT V9 product. Temporal and spatial analysis of V9 indicates a general coverage gain of 15–20 % relative to V8, which varies regionally and seasonally; e.g., the number of successful MOPITT retrievals in V9 was doubled over Canada in winter. Also, comparison with the corresponding IASI instrument indicated generally good agreement, with about a 5–10 % positive bias.
Cited articles
Ader, M. and Axelsson, D.: Drones in arctic environments, Master's thesis, KTH
Royal Institute of Technology, Stockholm, Sweden, 2017. a
Adolph, A. C., Albert, M. R., and Hall, D. K.: Near-surface temperature inversion during summer at Summit, Greenland, and its relation to MODIS-derived surface temperatures, The Cryosphere, 12, 907–920, https://doi.org/10.5194/tc-12-907-2018, 2018. a
Antokhin, P. N., Arshinov, M. Y., Belan, B. D., Davydov, D. K., Zhidovkin,
E. V., Ivlev, G. A., Kozlov, A. V., Kozlov, V. S., Panchenko, M. V., Penner,
I. E., Pestunov, D. A., Simonenkov, D. V., Tolmachev, G. N., Fofonov, A. V.,
Shamanaev, V. S., and Shmargunov, V. P.: Optik-É AN-30 Aircraft Laboratory
for Studies of the Atmospheric Composition, J. Atmos. Ocean. Tech., 29, 64–75, https://doi.org/10.1175/2011JTECHA1427.1, 2012. a
Barbieri, L., Kral, S., Bailey, S., Frazier, A., Jacob, J., Reuder, J., Brus,
D., Chilson, P., Crick, C., Detweiler, C., Doddi, A., Elston, J., Foroutan, H., González-Rocha, J., Greene, B. R., Guzman, M. I., Houston, A. L., Islam, A., Kemppinen, O., Lawrence, D., Pillar-Little, E. A., Ross, S. D., Sama, M. P., Schmale, D. G., Schuyler, T. J., Shankar, A., Smith, S. W., Waugh, S., Dixon, C., Borenstein, S., and de Boer, G.: Intercomparison of
Small Unmanned Aircraft System (sUAS) Measurements for Atmospheric Science
during the LAPSE-RATE Campaign, Sensors, 19, 2179, https://doi.org/10.3390/s19092179,
2019. a
Bärfuss, K., Pätzold, F., Altstädter, B., Kathe, E., Nowak, S.,
Bretschneider, L., Bestmann, U., and Lampert, A.: New Setup of the UAS
ALADINA for Measuring Boundary Layer Properties, Atmospheric Particles and
Solar Radiation, Atmosphere, 9, 28, https://doi.org/10.3390/atmos9010028, 2018. a, b
Behrendt, A.: Temperature Measurements with Lidar, Springer New
York, New York, NY, 273–305, https://doi.org/10.1007/0-387-25101-4_10, 2005. a
Berkes, F., Neis, P., Schultz, M. G., Bundke, U., Rohs, S., Smit, H. G. J., Wahner, A., Konopka, P., Boulanger, D., Nédélec, P., Thouret, V., and Petzold, A.: In situ temperature measurements in the upper troposphere and lowermost stratosphere from 2 decades of IAGOS long-term routine observation, Atmos. Chem. Phys., 17, 12495–12508, https://doi.org/10.5194/acp-17-12495-2017, 2017. a
Bernard-Grand'Maison, C. and Pollard, W.: An estimate of ice wedge volume for a High Arctic polar desert environment, Fosheim Peninsula, Ellesmere Island, The Cryosphere, 12, 3589–3604, https://doi.org/10.5194/tc-12-3589-2018, 2018. a
Bosch Sensortec: BMP280 Digital Pressure Sensor,
available at: https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf (last access: 5 November 2021),
2018. a
Boylan, P., Wang, J., Cohn, S. A., Hultberg, T., and August, T.: Identification
and intercomparison of surface-based inversions over Antarctica from IASI,
ERA-Interim, and Concordiasi dropsonde data, J. Geophys. Res.-Atmos., 121, 9089–9104, https://doi.org/10.1002/2015JD024724,
2016. a
Bradley, R. S., Keimig, F. T., and Diaz, H. F.: Recent changes in the North
American Arctic boundary layer in winter, J. Geophys. Res.-Atmos., 98, 8851–8858, https://doi.org/10.1029/93JD00311, 1993. a, b, c
Burgués, J. and Marco, S.: Environmental chemical sensing using small drones:
A review, Sci. Total Environ., 748, 141172,
https://doi.org/10.1016/j.scitotenv.2020.141172, 2020. a
Cassano, J. J., Seefeldt, M. W., Palo, S., Knuth, S. L., Bradley, A. C., Herrman, P. D., Kernebone, P. A., and Logan, N. J.: Observations of the atmosphere and surface state over Terra Nova Bay, Antarctica, using unmanned aerial systems, Earth Syst. Sci. Data, 8, 115–126, https://doi.org/10.5194/essd-8-115-2016, 2016. a, b
Chabot, D. and Bird, D. M.: Wildlife research and management methods in the
21st century: Where do unmanned aircraft fit in?, Journal of Unmanned Vehicle
Systems, 3, 137–155, https://doi.org/10.1139/juvs-2015-0021, 2015. a
Cohn, S. A., Hock, T., Cocquerez, P., Wang, J., Rabier, F., Parsons, D., Harr,
P., Wu, C.-C., Drobinski, P., Karbou, F., Vénel, S., Vargas, A., Fourrié,
N., Saint-Ramond, N., Guidard, V., Doerenbecher, A., Hsu, H.-H., Lin, P.-H.,
Chou, M.-D., Redelsperger, J.-L., Martin, C., Fox, J., Potts, N., Young, K.,
and Cole, H.: Driftsondes: Providing In Situ Long-Duration Dropsonde
Observations over Remote Regions, B. Am. Meteorol.
Soc., 94, 1661–1674, https://doi.org/10.1175/BAMS-D-12-00075.1, 2013. a
Cold Regions Research and Engineering Laboratory:
http://imb-crrel-dartmouth.org/, last access: 12 September 2021. a
Cowley, D., Moriarty, C., Geddes, G., Brown, G., Wade, T., and Nichol, C.: UAVs
in Context: Archaeological Airborne Recording in a National Body of Survey
and Record, Drones, 2, 2, https://doi.org/10.3390/drones2010002, 2017. a, b
de Boer, G., Ivey, M., Schmid, B., Lawrence, D., Dexheimer, D., Mei, F., Hubbe,
J., Bendure, A., Hardesty, J., Shupe, M. D., McComiskey, A., Telg, H.,
Schmitt, C., Matrosov, S. Y., Brooks, I., Creamean, J., Solomon, A., Turner,
D. D., Williams, C., Maahn, M., Argrow, B., Palo, S., Long, C. N., Gao,
R. S., and Mather, J.: A Bird’s-Eye View: Development of an Operational ARM Unmanned Aerial Capability for Atmospheric Research in Arctic Alaska,
B. Am. Meteorol. Soc., 99, 1197–1212,
https://doi.org/0.1175/BAMS-D-17-0156.1, 2018. a
de Boer, G., Diehl, C., Jacob, J., Houston, A., Smith, S. W., Chilson, P.,
Schmale, D. G., Intrieri, J., Pinto, J., Elston, J., Brus, D., Kemppinen, O.,
Clark, A., Lawrence, D., Bailey, S. C. C., Sama, M. P., Frazier, A., Crick,
C., Natalie, V., Pillar-Little, E., Klein, P., Waugh, S., Lundquist, J. K.,
Barbieri, L., Kral, S. T., Jensen, A. A., Dixon, C., Borenstein, S.,
Hesselius, D., Human, K., Hall, P., Argrow, B., Thornberry, T., Wright, R.,
and Kelly, J. T.: Development of Community, Capabilities, and Understanding
through Unmanned Aircraft-Based Atmospheric Research: The LAPSE-RATE
Campaign, B. Am. Meteorol. Soc., 101, E684–E699,
https://doi.org/10.1175/BAMS-D-19-0050.1, 2020. a
Department of Atmospheric Science, University of Wyoming:
Upperair Air Data, Soundings, available at: http://weather.uwyo.edu/upperair/sounding.html,
last access: 5 November 2021. a
DJI M100: https://www.dji.com/ca/matrice100, last access: 12 September 2021. a
DJI M210 RTK: https://www.dji.com/ca/matrice-200-series, last
access: 12 September 2021. a
DuBois, J. L., Multhauf, R. P., and Ziegler, C. A.: The invention and
development of the radiosonde: with a catalog of upper-atmosphere
telemetering probes in the National Museum of American History, Smithsonian
Instituion, Smithsonian studies in history and technology no. 53, Smithsonian
Institution Press, Washington, D.C.,
76–78, 2002. a
Ebeid, E., Skriver, M., and Jin, J.: A Survey on Open-Source Flight
Control Platforms of Unmanned Aerial Vehicle, in: 2017 Euromicro Conference
on Digital System Design (DSD), 396–402, https://doi.org/10.1109/DSD.2017.30,
2017. a
Fogal, P., LeBlanc, L., and Drummond, J.: The Polar Environment Atmospheric
Research Laboratory (PEARL): Sounding the Atmosphere at 80º North, Arctic,
66, 377–386, https://doi.org/10.14430/arctic4321, 2013. a
Gaffey, C. and Bhardwaj, A.: Applications of Unmanned Aerial Vehicles in
Cryosphere: Latest Advances and Prospects, Remote Sensing, 12, 948,
https://doi.org/10.3390/rs12060948, 2020. a, b
González-Jorge, H., Martínez-Sánchez, J., Bueno, M., Arias, and
Pedor: Unmanned Aerial Systems for Civil Applications: A Review, Drones, 1, 2,
https://doi.org/10.3390/drones1010002, 2017. a
Government of Canada, Historical Climate Data, available at:
https://climate.weather.gc.ca,
last access: 5 November 2021. a
Grachev, A. A., Persson, P. O. G., Uttal, T., Akish, E. A., Cox, C. J., Morris,
S. M., Fairall, C. W., Stone, R. S., Lesins, G., Makshtas, A. P., and Repina,
I. A.: Seasonal and latitudinal variations of surface fluxes at two Arctic
terrestrial sites, Clim. Dynam., 51, 1793–1818,
https://doi.org/10.1007/s00382-017-3983-4, 2018. a
Greene, B. R., Segales, A. R., Waugh, S., Duthoit, S., and Chilson, P. B.: Considerations for temperature sensor placement on rotary-wing unmanned aircraft systems, Atmos. Meas. Tech., 11, 5519–5530, https://doi.org/10.5194/amt-11-5519-2018, 2018. a, b, c, d
Gustafsson, T. and Bendz, E.: D8.5 – Guidelines for drone usage in arctic
environment, Tech. Rep. 730938–INTERACT, Integrating Activities for
Advanced Communities,
available at: https://eu-interact.org/app/uploads/2018/09/D8.5.pdf (last access: 5 November 2021), 2018. a
Hudson, S. R. and Brandt, R. E.: A Look at the Surface-Based Temperature
Inversion on the Antarctic Plateau, J. Climate, 18, 1673–1696,
https://doi.org/10.1175/JCLI3360.1, 2005. a, b, c, d
International Arctic Buoy Programme:
https://iabp.apl.uw.edu/, last access: 9 September 2021. a
Intrieri, J. M., de Boer, G., Shupe, M. D., Spackman, J. R., Wang, J., Neiman, P. J., Wick, G. A., Hock, T. F., and Hood, R. E.: Global Hawk dropsonde observations of the Arctic atmosphere obtained during the Winter Storms and Pacific Atmospheric Rivers (WISPAR) field campaign, Atmos. Meas. Tech., 7, 3917–3926, https://doi.org/10.5194/amt-7-3917-2014, 2014. a
Jackson, D. L. and Wick, G. A.: Near-Surface Air Temperature Retrieval Derived
from AMSU-A and Sea Surface Temperature Observations, J. Atmos.
Ocean. Tech., 27, 1769–1776, https://doi.org/10.1175/2010JTECHA1414.1,
2010. a
Jouvet, G., Weidmann, Y., van Dongen, E., Lüthi, M. P., Vieli, A., and Ryan,
J. C.: High-Endurance UAV for Monitoring Calving Glaciers: Application to the
Inglefield Bredning and Eqip Sermia, Greenland, Front. Earth Sci.,
7, 206, https://doi.org/10.3389/feart.2019.00206, 2019. a, b, c
Knuth, S. L. and Cassano, J. J.: Estimating Sensible and Latent Heat Fluxes
Using the Integral Method from in situ Aircraft Measurements, J.
Atmos. Ocean. Tech., 31, 1964–1981,
https://doi.org/10.1175/JTECH-D-14-00008.1, 2014. a, b
Kral, S., Reuder, J., Vihma, T., Suomi, I., O’Connor, E., Kouznetsov, R.,
Wrenger, B., Rautenberg, A., Urbancic, G., Jonassen, M., and et al.:
Innovative Strategies for Observations in the Arctic Atmospheric Boundary
Layer (ISOBAR) – The Hailuoto 2017 Campaign, Atmosphere, 9, 268,
https://doi.org/10.3390/atmos9070268, 2018. a
Kramar, V. and Maatta, H.: UAV Arctic Challenges and the First Step: Printed
Temperature Sensor, in: Proceedings of the 23rd Conference of Open
Innovations Association FRUCT, FRUCT’23, FRUCT Oy, Helsinki, Uusimaa, FIN,
2018. a
Kräuchi, A. and Philipona, R.: Return glider radiosonde for in situ upper-air research measurements, Atmos. Meas. Tech., 9, 2535–2544, https://doi.org/10.5194/amt-9-2535-2016, 2016. a, b
Lampert, A., Altstädter, B., Bärfuss, K., Bretschneider, L., Sandgaard, J.,
Michaelis, J., Lobitz, L., Asmussen, M., Damm, E., Käthner, R., Krüger, T.,
Lüpkes, C., Nowak, S., Peuker, A., Rausch, T., Reiser, F., Scholtz, A.,
Sotomayor Zakharov, D., Gaus, D., Bansmer, S., Wehner, B., and Pätzold,
F.: Unmanned Aerial Systems for Investigating the Polar Atmospheric Boundary
Layer – Technical Challenges and Examples of Applications, Atmosphere, 11,
416, https://doi.org/10.3390/atmos11040416, 2020a. a, b, c, d, e, f, g
Lampert, A., Pätzold, F., Asmussen, M. O., Lobitz, L., Krüger, T., Rausch, T., Sachs, T., Wille, C., Sotomayor Zakharov, D., Gaus, D., Bansmer, S., and Damm, E.: Studying boundary layer methane isotopy and vertical mixing processes at a rewetted peatland site using an unmanned aircraft system, Atmos. Meas. Tech., 13, 1937–1952, https://doi.org/10.5194/amt-13-1937-2020, 2020b. a, b
Lawrence, D. A. and Balsley, B. B.: High-Resolution Atmospheric Sensing of
Multiple Atmospheric Variables Using the DataHawk Small Airborne Measurement
System, J. Atmos. Ocean. Tech., 30, 2352–2366,
https://doi.org/10.1175/JTECH-D-12-00089.1, 2013. a, b
Lesins, G., Duck, T. J., and Drummond, J. R.: Climate trends at Eureka in the
Canadian high arctic, Atmos.-Ocean, 48, 59–80,
https://doi.org/10.3137/AO1103.2010, 2010. a
Lesins, G., Duck, T. J., and Drummond, J. R.: Surface Energy Balance Framework
for Arctic Amplification of Climate Change, J. Climate, 25,
8277–8288, https://doi.org/10.1175/JCLI-D-11-00711.1, 2012. a
Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I. F., and
Sobrino, J. A.: Satellite-derived land surface temperature: Current status
and perspectives, Remote Sens. Environ., 131, 14–37,
https://doi.org/10.1016/j.rse.2012.12.008, 2013. a
Luers, J. K. and Eskridge, R. E.: Use of Radiosonde Temperature Data in Climate
Studies, J. Climate, 11, 1002–1019,
1998. a
Mahesh, A., Walden, V. P., and Warren, S. G.: Radiosonde Temperature
Measurements in Strong Inversions: Correction for Thermal Lag Based on an
Experiment at the South Pole, J. Atmos. Ocean. Tech.,
14, 45–53, https://doi.org/10.1175/1520-0426(1997)014<0045:RTMISI>2.0.CO;2, 1997. a, b
Maxim Integrated Products, Inc.: MAX31865PMB1 Peripheral Module,
available at: https://datasheets.maximintegrated.com/en/ds/MAX31865PMB1.pdf (last access: 5 November 2021),
2014. a
McBeath, K.: The use of aircraft for meteorological research in the United
Kingdom, Meteorol. Appl., 21, 105–116,
https://doi.org/10.1002/met.1448, 2014. a
Miloshevich, L. M., Paukkunen, A., Vömel, H., and Oltmans, S. J.: Development
and Validation of a Time-Lag Correction for Vaisala Radiosonde Humidity
Measurements, J. Atmos. Ocean. Tech., 21, 1305– 1327, https://doi.org/10.1175/1520-0426(2004)021<1305:DAVOAT>2.0.CO;2, 2004. a
Multidisciplinary Drifting Observatory for the Study of Arctic Climate:
https://mosaic-expedition.org/, last access: 12 September 2021. a
National Data Buoy Center: https://www.ndbc.noaa.gov/, last access: 12 September 2021. a
Nédélec, P., Blot, R., Boulanger, D., Athier, G., Cousin, J.-M., Gautron, B.,
Petzold, A., Volz-Thomas, A., and Thouret, V.: Instrumentation on commercial
aircraft for monitoring the atmospheric composition on a global scale: the
IAGOS system, technical overview of ozone and carbon monoxide measurements,
Tellus B, 67, 27791,
https://doi.org/10.3402/tellusb.v67.27791, 2015. a
NOAA Physical Sciences Laboratory:
Title: Eureka Tower Radiation Instruments, available at:
https://psl.noaa.gov/arctic/observatories/eureka/eureka_tower.html
last access: 5 November 2021. a
Omega Engineering, Inc.: Ceramic Wire-Wound Platinum RTD Elements,
available at: https://assets.omega.com/spec/1PT100K-RTD-ELEMENTS.pdf, last access: 12 September 2021. a
Orellana-Samaniego, M. L., Ballari, D., Guzman, P., and Ospina, J. E.:
Estimating monthly air temperature using remote sensing on a region with
highly variable topography and scarce monitoring in the southern Ecuadorian
Andes, Theor. Appl. Climatol., 144, 949–966,
https://doi.org/10.1007/s00704-021-03583-3, 2021. a
Pavelsky, T. M., Boé, J., Hall, A., and Fetzer, E. J.: Atmospheric
inversion strength over polar oceans in winter regulated by sea ice, Clim.
Dynam., 36, 945–955, https://doi.org/10.1007/s00382-010-0756-8, 2011. a, b
Pesaran, A., Santhanagopalan, S., and Kim, G. H.: Addressing the Impact of
Temperature Extremes on Large Format Li-Ion Batteries for Vehicle
Applications, in: Presented at the 30th International Battery Seminar, 11–14
March 2013, Ft. Lauderdale, Florida; Related Information: NREL (National
Renewable Energy Laboratory), 2013. a
Pietroni, I., Argentini, S., and Petenko, I.: One Year of Surface-Based
Temperature Inversions at Dome C, Antarctica, Bound.-Lay. Meteorol.,
150, 131–151, https://doi.org/10.1007/s10546-013-9861-7, 2014. a, b
Pollard, W. H.: Distribution and characterization of ground ice on Fosheim
Peninsula, Ellesmere Island, Nunavut, in: Environmental response to climate
change in the Canadian High Arctic: geological survey of Canada, edited by: Garneau, M. and Alt, B. T., Bulletin,
529, 207–233, 2000. a
Rennie, J. J., Lawrimore, J. H., Gleason, B. E., Thorne, P. W., Morice, C. P.,
Menne, M. J., Williams, C. N., de Almeida, W. G., Christy, J., Flannery, M.,
Ishihara, M., Kamiguchi, K., Klein-Tank, A. M. G., Mhanda, A., Lister, D. H.,
Razuvaev, V., Renom, M., Rusticucci, M., Tandy, J., Worley, S. J., Venema,
V., Angel, W., Brunet, M., Dattore, B., Diamond, H., Lazzara, M. A.,
Le Blancq, F., Luterbacher, J., Mächel, H., Revadekar, J., Vose, R. S., and
Yin, X.: The international surface temperature initiative global land surface
databank: monthly temperature data release description and methods,
Geosci. Data J., 1, 75–102, https://doi.org/10.1002/gdj3.8,
2014. a
Reuder, J., Brisset, P., Jonassen, M. M., and Mayer, S.: The Small Unmanned
Meteorological Observer SUMO: A new tool for atmospheric boundary layer
research, Meteorol. Z., 18, 141–147,
https://doi.org/10.1127/0941-2948/2009/0363, 2009. a
Roldán, J., Joossen, G., Sanz, D., del Cerro, J., and Barrientos, A.: Mini-UAV
Based Sensory System for Measuring Environmental Variables in Greenhouses,
Sensors, 15, 3334–3350, https://doi.org/10.3390/s150203334, 2015. a
Segales, A. R., Greene, B. R., Bell, T. M., Doyle, W., Martin, J. J., Pillar-Little, E. A., and Chilson, P. B.: The CopterSonde: an insight into the development of a smart unmanned aircraft system for atmospheric boundary layer research, Atmos. Meas. Tech., 13, 2833–2848, https://doi.org/10.5194/amt-13-2833-2020, 2020. a
Shahmoradi, J., Talebi, E., Roghanchi, P., and Hassanalian, M.: A Comprehensive
Review of Applications of Drone Technology in the Mining Industry, Drones, 4,
34, https://doi.org/10.3390/drones4030034, 2020. a
Skony, S. M., Kahl, J. D. W., and Zaitseva, N. A.: Differences between
Radiosonde and Dropsonde Temperature Profiles over the Arctic Ocean, J. Atmos. Ocean. Tech., 11, 1400–1408,
https://doi.org/10.1175/1520-0426(1994)011<1400:DBRADT>2.0.CO;2, 1994. a
Smith, S. L. and Bonnaventure, P. P.: Quantifying Surface Temperature
Inversions and Their Impact on the Ground Thermal Regime at a High Arctic
Site, Arct. Antarct. Alp. Res., 49, 173–185,
https://doi.org/10.1657/AAAR0016-039, 2017. a
Soliman, A., Duguay, C., Saunders, W., and Hachem, S.: Pan-Arctic Land Surface
Temperature from MODIS and AATSR: Product Development and Intercomparison,
Remote Sensing, 4, 3833–3856, https://doi.org/10.3390/rs4123833, 2012. a
The Raspberry Pi Foundation: https://www.raspberrypi.org/,
last access: 12 September 2021. a
Tomlinson, C. J., Chapman, L., Thornes, J. E., and Baker, C.: Remote sensing
land surface temperature for meteorology and climatology: a review,
Meteorol. Appl., 18, 296–306,
https://doi.org/10.1002/met.287, 2011. a
Varentsov, M., Stepanenko, V., Repina, I., Artamonov, A., Bogomolov, V.,
Kuksova, N., Marchuk, E., Pashkin, A., and Varentsov, A.: Balloons and
Quadcopters: Intercomparison of Two Low-Cost Wind Profiling Methods,
Atmosphere, 12, 380, https://doi.org/10.3390/atmos12030380, 2021. a, b
Villa, T., Salimi, F., Morton, K., Morawska, L., and Gonzalez, F.: Development
and Validation of a UAV Based System for Air Pollution Measurements, Sensors,
16, 2202, https://doi.org/10.3390/s16122202, 2016. a
Walden, V. P., Mahesh, A., and Warren, S. G.: Comment on “Recent changes in
the North American Arctic boundary layer in winter” by R. S. Bradley et
al., J. Geophys. Res.-Atmos., 101, 7127–7134,
https://doi.org/10.1029/95JD03233, 1996. a, b, c
Wang, J., Hock, T., Cohn, S. A., Martin, C., Potts, N., Reale, T., Sun, B., and
Tilley, F.: Unprecedented upper-air dropsonde observations over Antarctica
from the 2010 Concordiasi Experiment: Validation of satellite-retrieved
temperature profiles, Geophys. Res. Lett., 40, 1231–1236,
https://doi.org/10.1002/grl.50246, 2013. a
Wang, T., Shi, J., Ma, Y., Husi, L., Comyn-Platt, E., Ji, D., Zhao, T., and
Xiong, C.: Recovering Land Surface Temperature Under Cloudy Skies Considering
the Solar-Cloud-Satellite Geometry: Application to MODIS and Landsat-8 Data,
J. Geophys. Res.-Atmos., 124, 3401–3416,
https://doi.org/10.1029/2018JD028976, 2019. a
Webb, W. L., Hubert, W. E., Miller, R. L., and Spurling, J. F.: The First
Meteorological Rocket Network, B. Am. Meteorol.
Soc., 42, 482–494,
1961. a
Wenta, M., Brus, D., Doulgeris, K., Vakkari, V., and Herman, A.: Winter atmospheric boundary layer observations over sea ice in the coastal zone of the Bay of Bothnia (Baltic Sea), Earth Syst. Sci. Data, 13, 33–42, https://doi.org/10.5194/essd-13-33-2021, 2021. a
Wildmann, N., Mauz, M., and Bange, J.: Two fast temperature sensors for probing of the atmospheric boundary layer using small remotely piloted aircraft (RPA), Atmos. Meas. Tech., 6, 2101–2113, https://doi.org/10.5194/amt-6-2101-2013, 2013. a
World Meteorological Organization: The State of the Global Climate 2020,
available at: https://public.wmo.int/en/our-mandate/climate/wmo-statement-state-of-global-climate, last access: 12 September 2021.
a
Zappa, C. J., Brown, S. M., Laxague, N. J. M., Dhakal, T., Harris, R. A.,
Farber, A. M., and Subramaniam, A.: Using Ship-Deployed High-Endurance
Unmanned Aerial Vehicles for the Study of Ocean Surface and Atmospheric
Boundary Layer Processes, Front. Mar. Sci., 6, 777,
https://doi.org/10.3389/fmars.2019.00777, 2020. a, b, c
Zhang, S., Xu, K., and Jow, T.: The low temperature performance of Li-ion
batteries, J. Power Sources, 115, 137–140,
https://doi.org/10.1016/S0378-7753(02)00618-3, 2003. a
Zhang, Y., Seidel, D. J., Golaz, J.-C., Deser, C., and Tomas, R. A.:
Climatological Characteristics of Arctic and Antarctic Surface-Based
Inversions, J. Climate, 24, 5167–5186,
https://doi.org/10.1175/2011JCLI4004.1, 2011. a
Zubax Robotics: Zubax GNSS 2 Datasheet,
available at: https://files.zubax.com/products/com.zubax.gnss/Zubax_GNSS_2_Datasheet.pdf (last access: 5 November 2021),
2019. a
Short summary
Two commercial quadcopters (DJI Matrice 100 and M210 RTK) were equipped with an air temperature measurement system. They were flown at the Polar Environment Atmospheric Research Laboratory, Eureka, Nunavut, Canada, at 80° N latitude to study surface-based temperature inversion during February–March field campaigns in 2017 and 2020. It was demonstrated that the drones can be effectively used in the High Arctic to measure vertical temperature profiles up to 75 m off the ground.
Two commercial quadcopters (DJI Matrice 100 and M210 RTK) were equipped with an air temperature...