Articles | Volume 14, issue 11
https://doi.org/10.5194/amt-14-7123-2021
https://doi.org/10.5194/amt-14-7123-2021
Research article
 | 
12 Nov 2021
Research article |  | 12 Nov 2021

Drone measurements of surface-based winter temperature inversions in the High Arctic at Eureka

Alexey B. Tikhomirov, Glen Lesins, and James R. Drummond

Related authors

Validation of the version 4.5 MAESTRO ozone and NO2 measurements
Paul S. Jeffery, James R. Drummond, C. Thomas McElroy, Kaley A. Walker, and Jiansheng Zou
EGUsphere, https://doi.org/10.5194/egusphere-2024-2115,https://doi.org/10.5194/egusphere-2024-2115, 2024
Short summary
Identifying episodic carbon monoxide emission events in the MOPITT measurement dataset
Paul S. Jeffery, James R. Drummond, Jiansheng Zou, and Kaley A. Walker
Atmos. Chem. Phys., 24, 4253–4263, https://doi.org/10.5194/acp-24-4253-2024,https://doi.org/10.5194/acp-24-4253-2024, 2024
Short summary
A comparison of carbon monoxide retrievals between the MOPITT satellite and Canadian high-Arctic ground-based NDACC and TCCON FTIR measurements
Ali Jalali, Kaley A. Walker, Kimberly Strong, Rebecca R. Buchholz, Merritt N. Deeter, Debra Wunch, Sébastien Roche, Tyler Wizenberg, Erik Lutsch, Erin McGee, Helen M. Worden, Pierre Fogal, and James R. Drummond
Atmos. Meas. Tech., 15, 6837–6863, https://doi.org/10.5194/amt-15-6837-2022,https://doi.org/10.5194/amt-15-6837-2022, 2022
Short summary
The MOPITT Version 9 CO product: sampling enhancements and validation
Merritt Deeter, Gene Francis, John Gille, Debbie Mao, Sara Martínez-Alonso, Helen Worden, Dan Ziskin, James Drummond, Róisín Commane, Glenn Diskin, and Kathryn McKain
Atmos. Meas. Tech., 15, 2325–2344, https://doi.org/10.5194/amt-15-2325-2022,https://doi.org/10.5194/amt-15-2325-2022, 2022
Short summary
Analysis of improvements in MOPITT observational coverage over Canada
Heba S. Marey, James R. Drummond, Dylan B. A. Jones, Helen Worden, Merritt N. Deeter, John Gille, and Debbie Mao
Atmos. Meas. Tech., 15, 701–719, https://doi.org/10.5194/amt-15-701-2022,https://doi.org/10.5194/amt-15-701-2022, 2022
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
High-resolution wind speed measurements with quadcopter uncrewed aerial systems: calibration and verification in a wind tunnel with an active grid
Johannes Kistner, Lars Neuhaus, and Norman Wildmann
Atmos. Meas. Tech., 17, 4941–4955, https://doi.org/10.5194/amt-17-4941-2024,https://doi.org/10.5194/amt-17-4941-2024, 2024
Short summary
High-altitude balloon-launched uncrewed aircraft system measurements of atmospheric turbulence and qualitative comparison with infrasound microphone response
Anisa N. Haghighi, Ryan D. Nolin, Gary D. Pundsack, Nick Craine, Aliaksei Stratsilatau, and Sean C. C. Bailey
Atmos. Meas. Tech., 17, 4863–4889, https://doi.org/10.5194/amt-17-4863-2024,https://doi.org/10.5194/amt-17-4863-2024, 2024
Short summary
Evaluation of the hyperspectral radiometer (HSR1) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site
Kelly A. Balmes, Laura D. Riihimaki, John Wood, Connor Flynn, Adam Theisen, Michael Ritsche, Lynn Ma, Gary B. Hodges, and Christian Herrera
Atmos. Meas. Tech., 17, 3783–3807, https://doi.org/10.5194/amt-17-3783-2024,https://doi.org/10.5194/amt-17-3783-2024, 2024
Short summary
Cost-effective off-grid automatic precipitation samplers for pollutant and biogeochemical atmospheric deposition
Alessia A. Colussi, Daniel Persaud, Melodie Lao, Bryan K. Place, Rachel F. Hems, Susan E. Ziegler, Kate A. Edwards, Cora J. Young, and Trevor C. VandenBoer
Atmos. Meas. Tech., 17, 3697–3718, https://doi.org/10.5194/amt-17-3697-2024,https://doi.org/10.5194/amt-17-3697-2024, 2024
Short summary
The ratio of transverse to longitudinal turbulent velocity statistics for aircraft measurements
Jakub L. Nowak, Marie Lothon, Donald H. Lenschow, and Szymon P. Malinowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-1366,https://doi.org/10.5194/egusphere-2024-1366, 2024
Short summary

Cited articles

Ader, M. and Axelsson, D.: Drones in arctic environments, Master's thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2017. a
Adolph, A. C., Albert, M. R., and Hall, D. K.: Near-surface temperature inversion during summer at Summit, Greenland, and its relation to MODIS-derived surface temperatures, The Cryosphere, 12, 907–920, https://doi.org/10.5194/tc-12-907-2018, 2018. a
Antokhin, P. N., Arshinov, M. Y., Belan, B. D., Davydov, D. K., Zhidovkin, E. V., Ivlev, G. A., Kozlov, A. V., Kozlov, V. S., Panchenko, M. V., Penner, I. E., Pestunov, D. A., Simonenkov, D. V., Tolmachev, G. N., Fofonov, A. V., Shamanaev, V. S., and Shmargunov, V. P.: Optik-É AN-30 Aircraft Laboratory for Studies of the Atmospheric Composition, J. Atmos. Ocean. Tech., 29, 64–75, https://doi.org/10.1175/2011JTECHA1427.1, 2012. a
Barbieri, L., Kral, S., Bailey, S., Frazier, A., Jacob, J., Reuder, J., Brus, D., Chilson, P., Crick, C., Detweiler, C., Doddi, A., Elston, J., Foroutan, H., González-Rocha, J., Greene, B. R., Guzman, M. I., Houston, A. L., Islam, A., Kemppinen, O., Lawrence, D., Pillar-Little, E. A., Ross, S. D., Sama, M. P., Schmale, D. G., Schuyler, T. J., Shankar, A., Smith, S. W., Waugh, S., Dixon, C., Borenstein, S., and de Boer, G.: Intercomparison of Small Unmanned Aircraft System (sUAS) Measurements for Atmospheric Science during the LAPSE-RATE Campaign, Sensors, 19, 2179, https://doi.org/10.3390/s19092179, 2019. a
Bärfuss, K., Pätzold, F., Altstädter, B., Kathe, E., Nowak, S., Bretschneider, L., Bestmann, U., and Lampert, A.: New Setup of the UAS ALADINA for Measuring Boundary Layer Properties, Atmospheric Particles and Solar Radiation, Atmosphere, 9, 28, https://doi.org/10.3390/atmos9010028, 2018. a, b
Download
Short summary
Two commercial quadcopters (DJI Matrice 100 and M210 RTK) were equipped with an air temperature measurement system. They were flown at the Polar Environment Atmospheric Research Laboratory, Eureka, Nunavut, Canada, at 80° N latitude to study surface-based temperature inversion during February–March field campaigns in 2017 and 2020. It was demonstrated that the drones can be effectively used in the High Arctic to measure vertical temperature profiles up to 75 m off the ground.