Articles | Volume 14, issue 12
https://doi.org/10.5194/amt-14-7909-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-7909-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Revisiting matrix-based inversion of scanning mobility particle sizer (SMPS) and humidified tandem differential mobility analyzer (HTDMA) data
Department of Marine, Earth, and Atmospheric Sciences, NC State University, Raleigh, NC 27695-8208, USA
Related authors
Paul J. DeMott, Jessica A. Mirrielees, Sarah Suda Petters, Daniel J. Cziczo, Markus D. Petters, Heinz G. Bingemer, Thomas C. J. Hill, Karl Froyd, Sarvesh Garimella, A. Gannet Hallar, Ezra J. T. Levin, Ian B. McCubbin, Anne E. Perring, Christopher N. Rapp, Thea Schiebel, Jann Schrod, Kaitlyn J. Suski, Daniel Weber, Martin J. Wolf, Maria Zawadowicz, Jake Zenker, Ottmar Möhler, and Sarah D. Brooks
Atmos. Meas. Tech., 18, 639–672, https://doi.org/10.5194/amt-18-639-2025, https://doi.org/10.5194/amt-18-639-2025, 2025
Short summary
Short summary
The Fifth International Ice Nucleation Workshop Phase 3 (FIN-03) compared the ambient atmospheric performance of ice-nucleating particle (INP) measuring systems and explored general methods for discerning atmospheric INP compositions. Mirroring laboratory results, INP concentrations agreed within 5–10 factors. Measurements of total aerosol properties and investigations of INP compositions supported a dominant role of soil and plant organic aerosol elements as INPs during the study.
Markus D. Petters, Tyas Pujiastuti, Ajmal Rasheeda Satheesh, Sabin Kasparoglu, Bethany Sutherland, and Nicholas Meskhidze
Atmos. Chem. Phys., 24, 745–762, https://doi.org/10.5194/acp-24-745-2024, https://doi.org/10.5194/acp-24-745-2024, 2024
Short summary
Short summary
This work introduces a new method that uses remote sensing techniques to obtain surface number emissions of particles with a diameter greater than 500 nm. The technique was applied to study particle emissions at an urban site near Houston, TX, USA. The emissions followed a diurnal pattern and peaked near noon local time. The daily averaged emissions correlated with wind speed. The source is likely due to wind-driven erosion of material situated on asphalted and other hard surfaces.
Sabin Kasparoglu, Mohammad Maksimul Islam, Nicholas Meskhidze, and Markus D. Petters
Atmos. Meas. Tech., 15, 5007–5018, https://doi.org/10.5194/amt-15-5007-2022, https://doi.org/10.5194/amt-15-5007-2022, 2022
Short summary
Short summary
A modified version of a Handix Scientific printed optical particle spectrometer is introduced. The paper presents characterization experiments, including concentration, size, and time responses. Integration of an external multichannel analyzer card removes counting limitations of the original instrument. It is shown that the high-resolution light-scattering amplitude data can be used to sense particle-phase transitions.
Sabin Kasparoglu, Ying Li, Manabu Shiraiwa, and Markus D. Petters
Atmos. Chem. Phys., 21, 1127–1141, https://doi.org/10.5194/acp-21-1127-2021, https://doi.org/10.5194/acp-21-1127-2021, 2021
Short summary
Short summary
Viscosity is important because it determines the lifetime, impact, and fate of particulate matter. We collected new data to rigorously test a framework that is used to constrain the phase state in global simulations. We find that the framework is accurate as long as appropriate compound specific inputs are available.
Paul J. DeMott, Jessica A. Mirrielees, Sarah Suda Petters, Daniel J. Cziczo, Markus D. Petters, Heinz G. Bingemer, Thomas C. J. Hill, Karl Froyd, Sarvesh Garimella, A. Gannet Hallar, Ezra J. T. Levin, Ian B. McCubbin, Anne E. Perring, Christopher N. Rapp, Thea Schiebel, Jann Schrod, Kaitlyn J. Suski, Daniel Weber, Martin J. Wolf, Maria Zawadowicz, Jake Zenker, Ottmar Möhler, and Sarah D. Brooks
Atmos. Meas. Tech., 18, 639–672, https://doi.org/10.5194/amt-18-639-2025, https://doi.org/10.5194/amt-18-639-2025, 2025
Short summary
Short summary
The Fifth International Ice Nucleation Workshop Phase 3 (FIN-03) compared the ambient atmospheric performance of ice-nucleating particle (INP) measuring systems and explored general methods for discerning atmospheric INP compositions. Mirroring laboratory results, INP concentrations agreed within 5–10 factors. Measurements of total aerosol properties and investigations of INP compositions supported a dominant role of soil and plant organic aerosol elements as INPs during the study.
Markus D. Petters, Tyas Pujiastuti, Ajmal Rasheeda Satheesh, Sabin Kasparoglu, Bethany Sutherland, and Nicholas Meskhidze
Atmos. Chem. Phys., 24, 745–762, https://doi.org/10.5194/acp-24-745-2024, https://doi.org/10.5194/acp-24-745-2024, 2024
Short summary
Short summary
This work introduces a new method that uses remote sensing techniques to obtain surface number emissions of particles with a diameter greater than 500 nm. The technique was applied to study particle emissions at an urban site near Houston, TX, USA. The emissions followed a diurnal pattern and peaked near noon local time. The daily averaged emissions correlated with wind speed. The source is likely due to wind-driven erosion of material situated on asphalted and other hard surfaces.
Sabin Kasparoglu, Mohammad Maksimul Islam, Nicholas Meskhidze, and Markus D. Petters
Atmos. Meas. Tech., 15, 5007–5018, https://doi.org/10.5194/amt-15-5007-2022, https://doi.org/10.5194/amt-15-5007-2022, 2022
Short summary
Short summary
A modified version of a Handix Scientific printed optical particle spectrometer is introduced. The paper presents characterization experiments, including concentration, size, and time responses. Integration of an external multichannel analyzer card removes counting limitations of the original instrument. It is shown that the high-resolution light-scattering amplitude data can be used to sense particle-phase transitions.
Sabin Kasparoglu, Ying Li, Manabu Shiraiwa, and Markus D. Petters
Atmos. Chem. Phys., 21, 1127–1141, https://doi.org/10.5194/acp-21-1127-2021, https://doi.org/10.5194/acp-21-1127-2021, 2021
Short summary
Short summary
Viscosity is important because it determines the lifetime, impact, and fate of particulate matter. We collected new data to rigorously test a framework that is used to constrain the phase state in global simulations. We find that the framework is accurate as long as appropriate compound specific inputs are available.
Cited articles
Agarwal, S., Mierle, K., and Others: Ceres Solver,
available at: http://ceres-solver.org, 2020. a
Atwood, S. A., Kreidenweis, S. M., DeMott, P. J., Petters, M. D., Cornwell, G. C., Martin, A. C., and Moore, K. A.: Classification of aerosol population type and cloud condensation nuclei properties in a coastal California littoral environment using an unsupervised cluster model, Atmos. Chem. Phys., 19, 6931–6947, https://doi.org/10.5194/acp-19-6931-2019, 2019. a, b, c
Baart, M. L.: The Use of Auto-Correlation for Pseudo-Rank
Determination in Noisy III-Conditioned Linear Least-Squares
Problems, IMA Journal of Numerical Analysis, 2, 241–247,
https://doi.org/10.1093/imanum/2.2.241, 1982. a
Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Julia: A Fresh
Approach to Numerical Computing, SIAM Review, 59, 65–98,
https://doi.org/10.1137/141000671, 2017. a
Bodega Bay Preprocessed Data: Size-resolved cloud condensation nuclei data collected during the CalWater 2015 field campaign (Version v1.0), edited by: Petters, M. D., Rothfuss, N. E., Taylor, H., Kreidenweis, S. M., DeMott, P. J., and Atwood, S. A.: Zenodo [Data set], https://doi.org/10.5281/zenodo.2605668, 2019.
Borsdorff, T., Hasekamp, O. P., Wassmann, A., and Landgraf, J.: Insights into Tikhonov regularization: application to trace gas column retrieval and the efficient calculation of total column averaging kernels, Atmos. Meas. Tech., 7, 523–535, https://doi.org/10.5194/amt-7-523-2014, 2014. a
Chen, H., Hodshire, A. L., Ortega, J., Greenberg, J., McMurry, P. H., Carlton, A. G., Pierce, J. R., Hanson, D. R., and Smith, J. N.: Vertically resolved concentration and liquid water content of atmospheric nanoparticles at the US DOE Southern Great Plains site, Atmos. Chem. Phys., 18, 311–326, https://doi.org/10.5194/acp-18-311-2018, 2018. a
Cubison, M., Coe, H., and Gysel, M.: A Modified Hygroscopic Tandem DMA and
a Data Retrieval Method Based on Optimal Estimation, J. Aerosol
Sci., 36, 846–865, https://doi.org/10.1016/j.jaerosci.2004.11.009, 2005. a, b, c
Dawson, K. W., Petters, M. D., Meskhidze, N., Petters, S. S., and Kreidenweis,
S. M.: Hygroscopic Growth and Cloud Droplet Activation of Xanthan Gum as a
Proxy for Marine Hydrogels, J. Geophys. Res.-Atmos.,
121, 11803–11818, https://doi.org/10.1002/2016JD025143, 2016. a
Dubovik, O. and King, M. D.: A Flexible Inversion Algorithm for Retrieval of
Aerosol Optical Properties from Sun and Sky Radiance Measurements,
J. Geophys. Res.-Atmos., 105, 20673–20696,
https://doi.org/10.1029/2000JD900282, 2000. a
Eldén, L.: A Weighted Pseudoinverse, Generalized Singular Values, and
Constrained Least Squares Problems, BIT Numerical Mathematics, 22, 487–502,
https://doi.org/10.1007/BF01934412, 1982. a, b
Farmer, D. K., Cappa, C. D., and Kreidenweis, S. M.: Atmospheric Processes
and Their Controlling Influence on Cloud Condensation Nuclei
Activity, Chem. Rev., 115, 4199–4217, https://doi.org/10.1021/cr5006292, 2015. a
Golub, G. H., Heath, M., and Wahba, G.: Generalized Cross-Validation as
a Method for Choosing a Good Ridge Parameter, Technometrics, 21,
215–223, https://doi.org/10.2307/1268518, 1979. a, b
Hansen, P. C.: 2. Decompositions and Other Tools, in:
Rank-Deficient and Discrete Ill-Posed Problems, Mathematical
Modeling and Computation, Society for Industrial and
Applied Mathematics, 19–44, https://doi.org/10.1137/1.9780898719697.ch2, 1998. a, b
Hansen, P. C.: Regularization Tools Version 4.0 for Matlab 7.3,
Numerical Algorithms, 46, 189–194, https://doi.org/10.1007/s11075-007-9136-9, 2007. a
Hodshire, A. L., Lawler, M. J., Zhao, J., Ortega, J., Jen, C., Yli-Juuti, T., Brewer, J. F., Kodros, J. K., Barsanti, K. C., Hanson, D. R., McMurry, P. H., Smith, J. N., and Pierce, J. R.: Multiple new-particle growth pathways observed at the US DOE Southern Great Plains field site, Atmos. Chem. Phys., 16, 9321–9348, https://doi.org/10.5194/acp-16-9321-2016, 2016. a
Huckle, T. and Sedlacek, M.: Data Based Regularization Matrices for the
Tikhonov-Phillips Regularization, PAMM, 12, 643–644,
https://doi.org/10.1002/pamm.201210310, 2012. a, b, c
Jefferson, A., Hageman, D., Morrow, H., Mei, F., and Watson, T.: Seven Years of
Aerosol Scattering Hygroscopic Growth Measurements from SGP: Factors
Influencing Water Uptake, J. Geophys. Res.-Atmos., 122,
9451–9466, https://doi.org/10.1002/2017JD026804, 2017. a, b
Jiang, J., Kim, C., Wang, X., Stolzenburg, M. R., Kaufman, S. L., Qi, C., Sem,
G. J., Sakurai, H., Hama, N., and McMurry, P. H.: Aerosol Charge Fractions
Downstream of Six Bipolar Chargers: Effects of Ion Source,
Source Activity, and Flowrate, Aerosol Sci. Tech., 48,
1207–1216, https://doi.org/10.1080/02786826.2014.976333, 2014. a
Jimenez, J. L., Canagaratna, M. R., Drewnick, F., Allan, J. D., Alfarra, M. R.,
Middlebrook, A. M., Slowik, J. G., Zhang, Q., Coe, H., Jayne, J. T., and
Worsnop, D. R.: Comment on “The Effects of Molecular Weight and Thermal
Decomposition on the Sensitivity of a Thermal Desorption Aerosol Mass
Spectrometer”, Aerosol Sci. Tech., 50,
https://doi.org/10.1080/02786826.2016.1205728, 2016. a
Joutsensaari, J., Ozon, M., Nieminen, T., Mikkonen, S., Lähivaara, T., Decesari, S., Facchini, M. C., Laaksonen, A., and Lehtinen, K. E. J.: Identification of new particle formation events with deep learning, Atmos. Chem. Phys., 18, 9597–9615, https://doi.org/10.5194/acp-18-9597-2018, 2018. a
Jung, J. and Kawamura, K.: Hygroscopic properties of newly formed ultrafine particles at an urban site surrounded by deciduous forest (Sapporo, northern Japan) during the summer of 2011, Atmos. Chem. Phys., 14, 7519–7531, https://doi.org/10.5194/acp-14-7519-2014, 2014. a
Knutson, E. O. and Whitby, K. T.: Aerosol Classification by Electric Mobility:
Apparatus, Theory, and Applications, J. Aerosol Sci., 6, 443–451,
https://doi.org/10.1016/0021-8502(75)90060-9, 1975. a, b
Krakauer, N. Y., Schneider, T., Randerson, J. T., and Olsen, S. C.: Using
Generalized Cross-Validation to Select Parameters in Inversions for Regional
Carbon Fluxes, Geophys. Res. Lett., 31, L19108, https://doi.org/10.1029/2004GL020323,
2004. a
Kreidenweis, S. M., Petters, M., and Lohmann, U.: 100 Years of Progress
in Cloud Physics, Aerosols, and Aerosol Chemistry Research,
Meteorological Monographs, 59, 11.1–11.72,
https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0024.1, 2019. a
Kuang, C.: Scanning Mobility Particle Spectrometer Instrument Handbook,
Tech. Rep. DOE/SC-ARM-TR-147, U.S. Department of Energy, Office of Science,
ARM Climate Research Facility, 2016. a
Lampe, J., Reichel, L., and Voss, H.: Large-Scale Tikhonov Regularization
via Reduction by Orthogonal Projection, Special Issue dedicated to Danny
Sorensen's 65th birthday, 436, 2845–2865, https://doi.org/10.1016/j.laa.2011.07.019,
2012. a
Lira, M., Iyer, R., Trindade, A. A., and Howle, V.: QR Versus Cholesky: A
Probabilistic Analysis, International Journal of Numerical Analysis and
Modeling, 1, 114–121, 2016. a
Lopez-Yglesias, X. F., Yeung, M. C., Dey, S. E., Brechtel, F. J., and Chan,
C. K.: Performance Evaluation of the Brechtel Mfg. Humidified
Tandem Differential Mobility Analyzer (BMI HTDMA) for Studying
Hygroscopic Properties of Aerosol Particles, Aerosol Sci. Tech., 48, 969–980, https://doi.org/10.1080/02786826.2014.952366, 2014. a
Mahish, M., Jefferson, A., and Collins, R. D.: Influence of Common
Assumptions Regarding Aerosol Composition and Mixing State on
Predicted CCN Concentration, Atmosphere, 9, https://doi.org/10.3390/atmos9020054,
2018. a, b
Marinescu, P. J., Levin, E. J. T., Collins, D., Kreidenweis, S. M., and van den Heever, S. C.: Quantifying aerosol size distributions and their temporal variability in the Southern Great Plains, USA, Atmos. Chem. Phys., 19, 11985–12006, https://doi.org/10.5194/acp-19-11985-2019, 2019. a
Martin, A. C., Cornwell, G. C., Atwood, S. A., Moore, K. A., Rothfuss, N. E., Taylor, H., DeMott, P. J., Kreidenweis, S. M., Petters, M. D., and Prather, K. A.: Transport of pollution to a remote coastal site during gap flow from California's interior: impacts on aerosol composition, clouds, and radiative balance, Atmos. Chem. Phys., 17, 1491–1509, https://doi.org/10.5194/acp-17-1491-2017, 2017. a
Mikhailov, E., Vlasenko, S., Niessner, R., and Pöschl, U.: Interaction of aerosol particles composed of protein and saltswith water vapor: hygroscopic growth and microstructural rearrangement, Atmos. Chem. Phys., 4, 323–350, https://doi.org/10.5194/acp-4-323-2004, 2004. a
Mogensen, P. K. and Riseth, A. N.: Optim: A Mathematical Optimization
Package for Julia, Journal of Open Source Software, 3, 615,
https://doi.org/10.21105/joss.00615, 2018. a, b
Müller, D., Chemyakin, E., Kolgotin, A., Ferrare, R. A., Hostetler, C. A.,
and Romanov, A.: Automated, Unsupervised Inversion of Multiwavelength Lidar
Data with TiARA: Assessment of Retrieval Performance of Microphysical
Parameters Using Simulated Data, Appl. Opt., 58, 4981–5008,
https://doi.org/10.1364/AO.58.004981, 2019. a, b, c
Oxford, C. R., Dang, A. J., Rapp, C. M., and Williams, B. J.: Interpretation of
Volatility Tandem Differential Mobility Analyzer (V-TDMA) Data
for Accurate Vapor Pressure and Enthalpy Measurement: Operational
Considerations, Multiple Charging, and Introduction to a New Analysis Program
(TAO), Aerosol Sci. Tech., 54, 410–425,
https://doi.org/10.1080/02786826.2019.1709617, 2020. a
Ozon, M., Seppänen, A., Kaipio, J. P., and Lehtinen, K. E. J.: Retrieval of process rate parameters in the general dynamic equation for aerosols using Bayesian state estimation: BAYROSOL1.0, Geosci. Model Dev., 14, 3715–3739, https://doi.org/10.5194/gmd-14-3715-2021, 2021a. a
Ozon, M., Stolzenburg, D., Dada, L., Seppänen, A., and Lehtinen, K. E. J.: Aerosol formation and growth rates from chamber experiments using Kalman smoothing, Atmos. Chem. Phys., 21, 12595–12611, https://doi.org/10.5194/acp-21-12595-2021, 2021b. a
Park, K., Dutcher, D., Emery, M., Pagels, J., Sakurai, H., Scheckman, J., Qian,
S., Stolzenburg, M. R., Wang, X., Yang, J., and McMurry, P. H.: Tandem
Measurements of Aerosol Properties – A Review of
Mobility Techniques with Extensions, Aerosol Sci. Tech.,
42, 801–816, https://doi.org/10.1080/02786820802339561, 2008. a, b
Petters, M. D.: Software and data for “Revisiting Matrix-Based Inversion of SMPS and HTDMA Data”, Zenodo [data set], https://doi.org/10.5281/zenodo.5550382, 2021. a
Phillips, D. L.: A Technique for the Numerical Solution of Certain Integral
Equations of the First Kind, Journal of the ACM, 9, 84–97,
https://doi.org/10.1145/321105.321114, 1962. a
Rader, D. and McMurry, P.: Application of the Tandem Differential Mobility
Analyzer to Studies of Droplet Growth or Evaporation, J. Aerosol
Sci., 17, 771–787, https://doi.org/10.1016/0021-8502(86)90031-5, 1986. a, b
Rawat, V. K., Buckley, D. T., Kimoto, S., Lee, M.-H., Fukushima, N., and Hogan,
C. J.: Two Dimensional Size – Mass Distribution Function Inversion
from Differential Mobility Analyzer – Aerosol Particle Mass Analyzer
(DMA – APM) Measurements, J. Aerosol Sci., 92,
70–82, https://doi.org/10.1016/j.jaerosci.2015.11.001, 2016. a, b, c
Reineking, A. and Porstendörfer, J.: Measurements of Particle Loss
Functions in a Differential Mobility Analyzer (TSI, Model 3071)
for Different Flow Rates, Aerosol Sci. Tech., 5, 483–486,
https://doi.org/10.1080/02786828608959112, 1986. a, b, c
Riemer, N., Ault, A. P., West, M., Craig, R. L., and Curtis, J. H.: Aerosol
Mixing State: Measurements, Modeling, and Impacts, Rev. Geophys., 57, 187–249, https://doi.org/10.1029/2018RG000615, 2019. a, b
Royalty, T. M., Phillips, B. N., Dawson, K. W., Reed, R., Meskhidze, N., and
Petters, M. D.: Aerosol Properties Observed in the Subtropical North
Pacific Boundary Layer, J. Geophys. Res.-Atmos., 122,
9990–10,012, https://doi.org/10.1002/2017JD026897, 2017. a
Russell, L. M., Zhang, S.-H., Flagan, R. C., Seinfeld, J. H., Stolzenburg,
M. R., and Caldow, R.: Radially Classified Aerosol Detector for
Aircraft-Based Submicron Aerosol Measurements, J. Atmos. Ocean. Technol., 13, 598–609,
https://doi.org/10.1175/1520-0426(1996)013<0598:RCADFA>2.0.CO;2, 1996. a
SGP SMPS Data: Atmospheric Radiation Measurement (ARM) user facility. 2016, updated hourly, Scanning mobility particle sizer (AOSSMPS), 2020-01-01 to 2020-09-27, Southern Great Plains (SGP) Lamont, OK (Extended and Co-located with C1) (E13), edited by: Kuang, C., Salwen, C., Boyer, M., and Singh, A., ARM Data Center, https://doi.org/10.5439/1095583, last access: 29 September 2020a.
SGP HTDMA Data: Atmospheric Radiation Measurement (ARM) user facility. 2017, updated hourly. Humidified Tandem Differential Mobility Analyzer (AOSHTDMA), 2020-01-01 to 2020-02-22, Southern Great Plains (SGP) Lamont, OK (Extended and Co-located with C1) (E13), edited by: Uin, J., Salwen, C., and Senum, G., ARM Data Center, https://doi.org/10.5439/1095581, last access: 29 September 2020b.
Shen, C., Zhao, G., and Zhao, C.: Effects of multi-charge on aerosol hygroscopicity measurement by a HTDMA, Atmos. Meas. Tech., 14, 1293–1301, https://doi.org/10.5194/amt-14-1293-2021, 2021. a, b, c, d
Shingler, T., Sorooshian, A., Ortega, A., Crosbie, E., Wonaschütz, A.,
Perring, A. E., Beyersdorf, A., Ziemba, L., Jimenez, J. L., Campuzano-Jost,
P., Mikoviny, T., Wisthaler, A., and Russell, L. M.: Ambient Observations of
Hygroscopic Growth Factor and f(RH) below 1: Case Studies from
Surface and Airborne Measurements, J. Geophys. Res.-Atmos., 121, 13661–13677, https://doi.org/10.1002/2016JD025471, 2016. a
Sipkens, T., Olfert, J., and Rogak, S.: Inversion Methods to Determine
Two-Dimensional Aerosol Mass-Mobility Distributions: A Critical
Comparison of Established Methods, J. Aerosol Sci., 140, 105484,
https://doi.org/10.1016/j.jaerosci.2019.105484, 2020. a, b, c
Suda, S. R. and Petters, M. D.: Accurate Determination of Aerosol
Activity Coefficients at Relative Humidities up to 99% Using the
Hygroscopicity Tandem Differential Mobility Analyzer Technique, Aerosol
Sci. Technol., 47, 991–1000, https://doi.org/10.1080/02786826.2013.807906,
2013. a
Swietlicki, E., Hansson, H. C., Hämeri, K., Svenningsson, B., Massling, A.,
Mcfiggans, G., Mcmurry, P. H., Petäjä, T., Tunved, P., Gysel, M.,
Topping, D., Weingartner, E., Baltensperger, U., Rissler, J., Wiedensohler,
A., and Kulmala, M.: Hygroscopic Properties of Submicrometer Atmospheric
Aerosol Particles Measured with H-TDMA Instruments in Various
Environments – a Review, Tellus B, 60, 432–469, https://doi.org/10.1111/j.1600-0889.2008.00350.x, 2008. a
Talukdar, S. S. and Swihart, M. T.: An Improved Data Inversion Program for
Obtaining Aerosol Size Distributions from Scanning Differential
Mobility Analyzer Data, Aerosol Sci. Tech., 37, 145–161,
https://doi.org/10.1080/02786820300952, 2003. a, b, c, d
Tikhonov, A. N.: Solution of Incorrectly Formulated Problems and the
Regularization Method, Soviet Mathematics Doklady, 4, 1035–1038, 1963. a
Twomey, S.: On the Numerical Solution of Fredholm Integral Equations of the
First Kind by the Inversion of the Linear System Produced by Quadrature, J.
ACM, 10, 97–101, 1963. a
Uin, J. and Smith, S.: Southern Great Plains (SGP) Aerosol Observing
System (AOS) Instrument Handbook, Tech. Rep. DOE/SC-ARM-TR-267,
U.S. Department of Energy, Office of Science, ARM Climate Research
Facility, 2020. a
Voutilainen, A., Kolehmainen, V., and Kaipio, J. P.: Statistical Inversion of
Aerosol Size Measurement Data, Inverse Problems in Engineering, 9, 67–94,
https://doi.org/10.1080/174159701088027753, 2001. a, b, c
Wang, S. C. and Flagan, R. C.: Scanning Electrical Mobility Spectrometer,
Aerosol Sci. Tech., 13, 230–240,
https://doi.org/10.1080/02786829008959441, 1990. a, b, c
Wiedensohler, A.: An Approximation of the Bipolar Charge Distribution for
Particles in the Submicron Size Range, J. Aerosol Sci., 19,
387–389, https://doi.org/10.1016/0021-8502(88)90278-9, 1988. a
Wolfenbarger, K. J. and Seinfeld, J. H.: Inversion of Aerosol Size Distribution
Data, J. Aerosol Sci., 21, 227–247,
https://doi.org/10.1016/0021-8502(90)90007-K, 1990. a, b
Wu, Z., Birmili, W., Poulain, L., Wang, Z., Merkel, M., Fahlbusch, B., van Pinxteren, D., Herrmann, H., and Wiedensohler, A.: Particle hygroscopicity during atmospheric new particle formation events: implications for the chemical species contributing to particle growth, Atmos. Chem. Phys., 13, 6637–6646, https://doi.org/10.5194/acp-13-6637-2013, 2013. a
Zhang, S.-H., Akutsu, Y., Russell, L. M., Flagan, R. C., and Seinfeld, J. H.:
Radial Differential Mobility Analyzer, Aerosol Sci. Tech.,
23, 357–372, https://doi.org/10.1080/02786829508965320, 1995. a
Short summary
Inverse methods infer physical properties from a measured instrument response. Measurement noise often interferes with the inversion. This work presents a general, domain-independent, accessible, and computationally efficient software implementation of a common class of statistical inversion methods. In addition, a new method to invert data from humidified tandem differential mobility analyzers is introduced. Results show that the approach is suitable for inversion of large-scale datasets.
Inverse methods infer physical properties from a measured instrument response. Measurement noise...