Articles | Volume 15, issue 4
https://doi.org/10.5194/amt-15-1007-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-1007-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cloud condensation nuclei (CCN) activity analysis of low-hygroscopicity aerosols using the aerodynamic aerosol classifier (AAC)
Kanishk Gohil
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, United States
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, United States
Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
Related authors
Chun-Ning Mao, Kanishk Gohil, and Akua A. Asa-Awuku
Atmos. Chem. Phys., 22, 13219–13228, https://doi.org/10.5194/acp-22-13219-2022, https://doi.org/10.5194/acp-22-13219-2022, 2022
Short summary
Short summary
The impact of molecular-level surface chemistry for aerosol water uptake and droplet growth is not well understood. In this work we show changes in water uptake due to molecular-level surface chemistry can be measured and quantified. In addition, we develop a single-parameter model, representing changes in aerosol chemistry that can be used in global climate models to reduce the uncertainty in aerosol-cloud predictions.
Kanishk Gohil, Chun-Ning Mao, Dewansh Rastogi, Chao Peng, Mingjin Tang, and Akua Asa-Awuku
Atmos. Chem. Phys., 22, 12769–12787, https://doi.org/10.5194/acp-22-12769-2022, https://doi.org/10.5194/acp-22-12769-2022, 2022
Short summary
Short summary
The Hybrid Activity Model (HAM) is a promising new droplet growth model that can be potentially used for the analysis of any type of atmospheric compound. HAM may potentially improve the representation of hygroscopicity of organic aerosols in large-scale global climate models (GCMs), hence reducing the uncertainties in the climate forcing due to the aerosol indirect effect.
Nahin Ferdousi-Rokib, Stephanie Jacoby, N. Cazimir Armstrong, Alana Dodero, Martin Changman Ahn, Ergine Zephira Remy, Zhenfa Zhang, Avram Gold, Joseph L. Woo, Yue Zhang, Jason D. Surratt, and Akua A. Asa-Awuku
EGUsphere, https://doi.org/10.5194/egusphere-2025-1935, https://doi.org/10.5194/egusphere-2025-1935, 2025
Short summary
Short summary
This study looks at how natural compounds when mixed with salts in the air affect how clouds form. These compounds come from plants and are found all over the world. They are sticky, and this changes how water droplets and clouds form. Sometimes the compound spreads more easily when mixed with salt, while the other compound does not change. Depending on the condition, these mixtures can behave differently, which affects how we predict cloud formation.
Jie Zhang, Tianyu Zhu, Alexandra Catena, Yaowei Li, Margaret J. Schwab, Pengfei Liu, Akua Asa-Awuku, and James Schwab
Atmos. Chem. Phys., 24, 13445–13456, https://doi.org/10.5194/acp-24-13445-2024, https://doi.org/10.5194/acp-24-13445-2024, 2024
Short summary
Short summary
This study shows the derived organic aerosol hygroscopicity under high-humidity conditions based on a simple optical scatter monitor system, including two nephelometric monitors (pDR-1500), when the aerosol chemical composition is already known.
Chun-Ning Mao, Kanishk Gohil, and Akua A. Asa-Awuku
Atmos. Chem. Phys., 22, 13219–13228, https://doi.org/10.5194/acp-22-13219-2022, https://doi.org/10.5194/acp-22-13219-2022, 2022
Short summary
Short summary
The impact of molecular-level surface chemistry for aerosol water uptake and droplet growth is not well understood. In this work we show changes in water uptake due to molecular-level surface chemistry can be measured and quantified. In addition, we develop a single-parameter model, representing changes in aerosol chemistry that can be used in global climate models to reduce the uncertainty in aerosol-cloud predictions.
Kanishk Gohil, Chun-Ning Mao, Dewansh Rastogi, Chao Peng, Mingjin Tang, and Akua Asa-Awuku
Atmos. Chem. Phys., 22, 12769–12787, https://doi.org/10.5194/acp-22-12769-2022, https://doi.org/10.5194/acp-22-12769-2022, 2022
Short summary
Short summary
The Hybrid Activity Model (HAM) is a promising new droplet growth model that can be potentially used for the analysis of any type of atmospheric compound. HAM may potentially improve the representation of hygroscopicity of organic aerosols in large-scale global climate models (GCMs), hence reducing the uncertainties in the climate forcing due to the aerosol indirect effect.
Chao Peng, Patricia N. Razafindrambinina, Kotiba A. Malek, Lanxiadi Chen, Weigang Wang, Ru-Jin Huang, Yuqing Zhang, Xiang Ding, Maofa Ge, Xinming Wang, Akua A. Asa-Awuku, and Mingjin Tang
Atmos. Chem. Phys., 21, 7135–7148, https://doi.org/10.5194/acp-21-7135-2021, https://doi.org/10.5194/acp-21-7135-2021, 2021
Short summary
Short summary
Organosulfates are important constituents in tropospheric aerosol particles, but their hygroscopic properties and cloud condensation nuclei activities are not well understood. In our work, three complementary techniques were employed to investigate the interactions of 11 organosulfates with water vapor under sub- and supersaturated conditions.
Cited articles
Chein, H. and Lundgren, D. A.: A virtual impactor with clean air core for the
generation of aerosols with narrow size distributions, Aerosol Sci.
Tech., 18, 376–388, 1993. a
Conner, W. D.: An inertial-type particle separator for collecting large
samples, JAPCA J. Air Waste Ma., 16, 35–38, 1966. a
Flagan, R. C.: Opposed migration aerosol classifier (OMAC), Aerosol Sci.
Tech., 38, 890–899, 2004. a
Fofie, E., Donahue, N., and Asa-Awuku, A.: Cloud condensation nuclei activity
and droplet formation of primary and secondary organic aerosol mixtures,
Aerosol Sci. Tech., 52, 242–251, 2018. a
Fuchs, N.: On the stationary charge distribution on aerosol particles in a
bipolar ionic atmosphere, Geofisica pura e applicata, 56, 185–193, 1963. a
Giordano, M., Espinoza, C., and Asa-Awuku, A.: Experimentally measured morphology of biomass burning aerosol and its impacts on CCN ability, Atmos. Chem. Phys., 15, 1807–1821, https://doi.org/10.5194/acp-15-1807-2015, 2015. a
Gohil, K.: PyCAT: v1.0, Zenodo [code], https://doi.org/10.5281/zenodo.6142898, 2022. a
Guard, U. C.: Chemical Hazard Response Information System (CHRIS)-Hazardous
Chemical Data, Commandant Instruction, Department of Transportation, Hero ID: 5208492, 16465, 1999. a
Gunn, R.: The ratio of the positive and negative light ion conductivities
within a neutral aerosol space, J. Colloid Sci., 11, 661–696,
1956. a
Johnson, T. J., Nishida, R. T., Irwin, M., Symonds, J. P., Olfert, J. S., and
Boies, A. M.: Measuring the bipolar charge distribution of nanoparticles:
Review of methodologies and development using the Aerodynamic Aerosol
Classifier, J. Aerosol Sci., 143, 105526, https://doi.org/10.1016/j.jaerosci.2020.105526, 2020. a
Johnson, T. J., Symonds, J. P., Olfert, J. S., and Boies, A. M.: Accelerated
measurements of aerosol size distributions by continuously scanning the
aerodynamic aerosol classifier, Aerosol Sci. Tech., 55, 119–141,
2021. a
Keskinen, J., Pietarinen, K., and Lehtimäki, M.: Electrical low pressure
impactor, J. Aerosol Sci., 23, 353–360, 1992. a
Kim, J. H., Mulholland, G. W., Kukuck, S. R., and Pui, D. Y.: Slip correction
measurements of certified PSL nanoparticles using a nanometer differential
mobility analyzer (nano-DMA) for Knudsen number from 0.5 to 83, J.
Res. Natl. Inst. Stan., 110, 31–54, https://doi.org/10.6028/jres.110.005, 2005. a
Lathem, T. L. and Nenes, A.: Water vapor depletion in the DMT continuous-flow
CCN chamber: Effects on supersaturation and droplet growth, Aerosol Sci. Tech., 45, 604–615, 2011. a
Marple, V. A., Rubow, K. L., and Behm, S. M.: A microorifice uniform deposit
impactor (MOUDI): Description, calibration, and use, Aerosol Sci.
Tech., 14, 434–446, 1991. a
Martinsson, B. G., Karlsson, M. N., and Frank, G.: Methodology to estimate the transfer function of individual differential mobility analyzers, Aerosol
Sci. Tech., 35, 815–823, 2001. a
Mikhailov, E., Vlasenko, S., Rose, D., and Pöschl, U.: Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake, Atmos. Chem. Phys., 13, 717–740, https://doi.org/10.5194/acp-13-717-2013, 2013. a
Padró, L. T., Moore, R. H., Zhang, X., Rastogi, N., Weber, R. J., and Nenes, A.: Mixing state and compositional effects on CCN activity and droplet growth kinetics of size-resolved CCN in an urban environment, Atmos. Chem. Phys., 12, 10239–10255, https://doi.org/10.5194/acp-12-10239-2012, 2012. a
Peng, C., Razafindrambinina, P. N., Malek, K. A., Chen, L., Wang, W., Huang, R.-J., Zhang, Y., Ding, X., Ge, M., Wang, X., Asa-Awuku, A. A., and Tang, M.: Interactions of organosulfates with water vapor under sub- and supersaturated conditions, Atmos. Chem. Phys., 21, 7135–7148, https://doi.org/10.5194/acp-21-7135-2021, 2021. a
Peng, L., Li, L., Zhang, G., Du, X., Wang, X., Peng, P., Sheng, G., and Bi, X.: Technical note: Measurement of chemically resolved volume equivalent diameter and effective density of particles by AAC-SPAMS, Atmos. Chem. Phys., 21, 5605–5613, https://doi.org/10.5194/acp-21-5605-2021, 2021. a
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007. a, b, c
Petters, M. D., Prenni, A. J., Kreidenweis, S. M., and DeMott, P. J.: On
measuring the critical diameter of cloud condensation nuclei using mobility
selected aerosol, Aerosol Sci. Tech., 41, 907–913, 2007. a
Rader, D. and McMurry, P.: Application of the tandem differential mobility
analyzer to studies of droplet growth or evaporation, J. Aerosol
Sci., 17, 771–787, 1986. a
Rose, D., Gunthe, S. S., Mikhailov, E., Frank, G. P., Dusek, U., Andreae, M. O., and Pöschl, U.: Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment, Atmos. Chem. Phys., 8, 1153–1179, https://doi.org/10.5194/acp-8-1153-2008, 2008. a, b, c, d, e
Rosenørn, T., Kiss, G., and Bilde, M.: Cloud droplet activation of
saccharides and levoglucosan particles, Atmos. Environ., 40, 1794–1802, 2006. a
Sang-Nourpour, N. and Olfert, J. S.: Calibration of optical particle counters
with an aerodynamic aerosol classifier, J. Aerosol Sci., 138, 105452, https://doi.org/10.1016/j.jaerosci.2019.105452, 2019. a
Stolzenburg, M. R.: An ultrafine aerosol size distribution measuring system,
University of Minnesota, https://www.proquest.com/docview/303683946?pq-origsite=gscholar&fromopenview=true (last access: 30 July 2021), 1988. a
Su, B., Zhang, G., Zhuo, Z., Xie, Q., Du, X., Fu, Y., Wu, S., Huang, F., Bi, X., Li, X. and Li, L.: Different characteristics of individual particles from light-duty diesel vehicle at the launching and idling state by AAC-SPAMS, J. Hazard. Mater., 418, 126304, https://doi.org/10.1016/j.jhazmat.2021.126304, 2021. a
Sullivan, R. C., Moore, M. J. K., Petters, M. D., Kreidenweis, S. M., Roberts, G. C., and Prather, K. A.: Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles, Atmos. Chem. Phys., 9, 3303–3316, https://doi.org/10.5194/acp-9-3303-2009, 2009. a
Tavakoli, F., Symonds, J. P., and Olfert, J. S.: Generation of a monodisperse
size-classified aerosol independent of particle charge, Aerosol Sci. Tech., 48, 1–4, https://doi.org/10.1080/02786826.2013.877121, 2014. a, b, c
Vu, D., Short, D., Karavalakis, G., Durbin, T., and Asa-Awuku, A.: Integrating cloud condensation nuclei predictions with fast time resolved aerosol instrumentation to determine the hygroscopic properties of emissions over transient drive cycles, Aerosol Sci. Tech., 49, 1149–1159, 2015. a
Vu, D., Gao, S., Berte, T., Kacarab, M., Yao, Q., Vafai, K., and Asa-Awuku, A.: External and internal cloud condensation nuclei (CCN) mixtures: controlled laboratory studies of varying mixing states, Atmos. Meas. Tech., 12, 4277–4289, https://doi.org/10.5194/amt-12-4277-2019, 2019. a, b
Wang, J., Shilling, J. E., Liu, J., Zelenyuk, A., Bell, D. M., Petters, M. D., Thalman, R., Mei, F., Zaveri, R. A., and Zheng, G.: Cloud droplet activation of secondary organic aerosol is mainly controlled by molecular weight, not water solubility, Atmos. Chem. Phys., 19, 941–954, https://doi.org/10.5194/acp-19-941-2019, 2019. a
Wang, Z., Su, H., Wang, X., Ma, N., Wiedensohler, A., Pöschl, U., and Cheng, Y.: Scanning supersaturation condensation particle counter applied as a nano-CCN counter for size-resolved analysis of the hygroscopicity and chemical composition of nanoparticles, Atmos. Meas. Tech., 8, 2161–2172, https://doi.org/10.5194/amt-8-2161-2015, 2015. a
Wang, Z., Cheng, Y., Ma, N., Mikhailov, E., Pöschl, U., and Su, H.: Dependence of the hygroscopicity parameter κ on particle size, humidity and solute concentration: implications for laboratory experiments, field measurements and model studies, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2017-253, in review, 2017.
a, b
Zieger, P., Väisänen, O., Corbin, J.C., Partridge, D.G., Bastelberger, S., Mousavi-Fard, M., Rosati, B., Gysel, M., Krieger, U.K., Leck, C. and Nenes, A.: Revising the hygroscopicity of inorganic sea salt
particles, Nat. Commun., 8, 1–10, 2017. a
Short summary
This work develops a methodology and software to study and analyze the cloud-droplet-forming ability of aerosols with an aerodynamic aerosol classifier (AAC). This work quantifies the uncertainties in size-resolved measurements and subsequent uncertainties propagated to cloud droplet parameterizations. Lastly, we present the best practices for AAC cloud droplet measurement.
This work develops a methodology and software to study and analyze the cloud-droplet-forming...