Articles | Volume 15, issue 6
https://doi.org/10.5194/amt-15-1689-2022
https://doi.org/10.5194/amt-15-1689-2022
Research article
 | 
22 Mar 2022
Research article |  | 22 Mar 2022

Detecting wave features in Doppler radial velocity radar observations

Matthew A. Miller, Sandra E. Yuter, Nicole P. Hoban, Laura M. Tomkins, and Brian A. Colle

Related authors

Objectively identified mesoscale surface air pressure waves in the context of winter storm environments and radar reflectivity features: a 3+ year analysis
Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins
EGUsphere, https://doi.org/10.5194/egusphere-2024-2160,https://doi.org/10.5194/egusphere-2024-2160, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Dual adaptive differential threshold method for automated detection of faint and strong echo features in radar observations of winter storms
Laura M. Tomkins, Sandra E. Yuter, and Matthew A. Miller
Atmos. Meas. Tech., 17, 3377–3399, https://doi.org/10.5194/amt-17-3377-2024,https://doi.org/10.5194/amt-17-3377-2024, 2024
Short summary
Objective identification of pressure wave events from networks of 1 Hz, high-precision sensors
Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins
Atmos. Meas. Tech., 17, 113–134, https://doi.org/10.5194/amt-17-113-2024,https://doi.org/10.5194/amt-17-113-2024, 2024
Short summary
Image muting of mixed precipitation to improve identification of regions of heavy snow in radar data
Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, and Luke R. Allen
Atmos. Meas. Tech., 15, 5515–5525, https://doi.org/10.5194/amt-15-5515-2022,https://doi.org/10.5194/amt-15-5515-2022, 2022
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Drop size distribution retrieval using dual-polarization radar at C-band and S-band
Daniel Durbin, Yadong Wang, and Pao-Liang Chang
Atmos. Meas. Tech., 17, 5397–5411, https://doi.org/10.5194/amt-17-5397-2024,https://doi.org/10.5194/amt-17-5397-2024, 2024
Short summary
Thermal tides in the middle atmosphere at mid-latitudes measured with a ground-based microwave radiometer
Witali Krochin, Axel Murk, and Gunter Stober
Atmos. Meas. Tech., 17, 5015–5028, https://doi.org/10.5194/amt-17-5015-2024,https://doi.org/10.5194/amt-17-5015-2024, 2024
Short summary
Global sensitivity analysis of simulated remote sensing polarimetric observations over snow
Matteo Ottaviani, Gabriel Harris Myers, and Nan Chen
Atmos. Meas. Tech., 17, 4737–4756, https://doi.org/10.5194/amt-17-4737-2024,https://doi.org/10.5194/amt-17-4737-2024, 2024
Short summary
Improving the Gaussianity of radar reflectivity departures between observations and simulations using symmetric rain rates
Yudong Gao, Lidou Huyan, Zheng Wu, and Bojun Liu
Atmos. Meas. Tech., 17, 4675–4686, https://doi.org/10.5194/amt-17-4675-2024,https://doi.org/10.5194/amt-17-4675-2024, 2024
Short summary
On the temperature stability requirements of free-running Nd:YAG lasers for atmospheric temperature profiling through the rotational Raman technique
José Alex Zenteno-Hernández, Adolfo Comerón, Federico Dios, Alejandro Rodríguez-Gómez, Constantino Muñoz-Porcar, Michaël Sicard, Noemi Franco, Andreas Behrendt, and Paolo Di Girolamo
Atmos. Meas. Tech., 17, 4687–4694, https://doi.org/10.5194/amt-17-4687-2024,https://doi.org/10.5194/amt-17-4687-2024, 2024
Short summary

Cited articles

Allen, G., Vaughan, G., Toniazzo, T., Coe, H., Connolly, P., Yuter, S. E., Burleyson, C. D., Minnis, P., and Ayers, J. K.: Gravity-wave-induced perturbations in marine stratocumulus, Q. J. Roy. Meteor. Soc., 139, 32–45, https://doi.org/10.1002/qj.1952, 2013. a, b
Battan, L. J.: Radar meteorology. By L. J. Battan (University of Chicago Press), 1959. Pp. xi, 161; 77 Figs.; 16 Tables. 45s, Q. J. Roy. Meteor. Soc., 86, 292–292, https://doi.org/10.1002/qj.49708636830, 1960. a
Doviak, R. J. and Zrnić, D. S.: Doppler Radar and Weather Observations, 2nd edn., Academic Press, New York, ISBN-13: 978-0486450605, ISBN-10: 0486450600, 1993. a
Fovell, R. G., Mullendore, G. L., and Kim, S.-H.: Discrete Propagation in Numerically Simulated Nocturnal Squall Lines, Mon. Weather Rev., 134, 3735–3752, https://doi.org/10.1175/MWR3268.1, 2006. a, b
Gaffin, D. M., Parker, S. S., and Kirkwood, P. D.: An Unexpectedly Heavy and Complex Snowfall Event across the Southern Appalachian Region, Weather Forecast., 18, 224–235, https://doi.org/10.1175/1520-0434(2003)018<0224:AUHACS>2.0.CO;2, 2003. a, b
Download
Short summary
Apparent waves in the atmosphere and similar features in storm winds can be detected by taking the difference between successive Doppler weather radar scans measuring radar-relative storm air motions. Applying image filtering to the difference data better isolates the detected signal. This technique is a useful tool in weather research and forecasting since such waves can trigger or enhance precipitation.