Articles | Volume 15, issue 6
https://doi.org/10.5194/amt-15-1689-2022
https://doi.org/10.5194/amt-15-1689-2022
Research article
 | 
22 Mar 2022
Research article |  | 22 Mar 2022

Detecting wave features in Doppler radial velocity radar observations

Matthew A. Miller, Sandra E. Yuter, Nicole P. Hoban, Laura M. Tomkins, and Brian A. Colle

Related authors

Hunting for gravity waves in non-orographic winter storms using 3+ years of regional surface air pressure network and radar observations
Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins
Atmos. Chem. Phys., 25, 1765–1790, https://doi.org/10.5194/acp-25-1765-2025,https://doi.org/10.5194/acp-25-1765-2025, 2025
Short summary
Synthesis of surface snowfall rates and radar-observed storm structures in 10+ years of Northeast US winter storms
Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, Mariko Oue, and Charles N. Helms
EGUsphere, https://doi.org/10.5194/egusphere-2025-6,https://doi.org/10.5194/egusphere-2025-6, 2025
Short summary
In-cloud characteristics observed in US Northeast and Midwest non-orographic winter storms with implications for ice particle mass growth and residence time
Luke R. Allen, Sandra E. Yuter, Declan M. Crowe, Matthew A. Miller, and K. Lee Thornhill
EGUsphere, https://doi.org/10.5194/egusphere-2024-3808,https://doi.org/10.5194/egusphere-2024-3808, 2024
Short summary
Dual adaptive differential threshold method for automated detection of faint and strong echo features in radar observations of winter storms
Laura M. Tomkins, Sandra E. Yuter, and Matthew A. Miller
Atmos. Meas. Tech., 17, 3377–3399, https://doi.org/10.5194/amt-17-3377-2024,https://doi.org/10.5194/amt-17-3377-2024, 2024
Short summary
Objective identification of pressure wave events from networks of 1 Hz, high-precision sensors
Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins
Atmos. Meas. Tech., 17, 113–134, https://doi.org/10.5194/amt-17-113-2024,https://doi.org/10.5194/amt-17-113-2024, 2024
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Observations of tall-building wakes using a scanning Doppler lidar
Natalie E. Theeuwes, Janet F. Barlow, Antti Mannisenaho, Denise Hertwig, Ewan O'Connor, and Alan Robins
Atmos. Meas. Tech., 18, 1355–1371, https://doi.org/10.5194/amt-18-1355-2025,https://doi.org/10.5194/amt-18-1355-2025, 2025
Short summary
Mid-Atlantic nocturnal low-level jet characteristics: a machine learning analysis of radar wind profiles
Maurice Roots, John T. Sullivan, and Belay Demoz
Atmos. Meas. Tech., 18, 1269–1282, https://doi.org/10.5194/amt-18-1269-2025,https://doi.org/10.5194/amt-18-1269-2025, 2025
Short summary
Mitigating radome-induced bias in X-band weather radar polarimetric moments using an adaptive discrete Fourier transform algorithm
Padmanabhan Thiruvengadam, Guillaume Lesage, Ambinintsoa Volatiana Ramanamahefa, and Joël Van Baelen
Atmos. Meas. Tech., 18, 1185–1191, https://doi.org/10.5194/amt-18-1185-2025,https://doi.org/10.5194/amt-18-1185-2025, 2025
Short summary
GNSS-RO residual ionospheric error (RIE): a new method and assessment
Dong L. Wu, Valery A. Yudin, Kyu-Myong Kim, Mohar Chattopadhyay, Lawrence Coy, Ruth S. Lieberman, C. C. Jude H. Salinas, Jae N. Lee, Jie Gong, and Guiping Liu
Atmos. Meas. Tech., 18, 843–863, https://doi.org/10.5194/amt-18-843-2025,https://doi.org/10.5194/amt-18-843-2025, 2025
Short summary
Benchmarking KDP in rainfall: a quantitative assessment of estimation algorithms using C-band weather radar observations
Miguel Aldana, Seppo Pulkkinen, Annakaisa von Lerber, Matthew R. Kumjian, and Dmitri Moisseev
Atmos. Meas. Tech., 18, 793–816, https://doi.org/10.5194/amt-18-793-2025,https://doi.org/10.5194/amt-18-793-2025, 2025
Short summary

Cited articles

Allen, G., Vaughan, G., Toniazzo, T., Coe, H., Connolly, P., Yuter, S. E., Burleyson, C. D., Minnis, P., and Ayers, J. K.: Gravity-wave-induced perturbations in marine stratocumulus, Q. J. Roy. Meteor. Soc., 139, 32–45, https://doi.org/10.1002/qj.1952, 2013. a, b
Battan, L. J.: Radar meteorology. By L. J. Battan (University of Chicago Press), 1959. Pp. xi, 161; 77 Figs.; 16 Tables. 45s, Q. J. Roy. Meteor. Soc., 86, 292–292, https://doi.org/10.1002/qj.49708636830, 1960. a
Doviak, R. J. and Zrnić, D. S.: Doppler Radar and Weather Observations, 2nd edn., Academic Press, New York, ISBN-13: 978-0486450605, ISBN-10: 0486450600, 1993. a
Fovell, R. G., Mullendore, G. L., and Kim, S.-H.: Discrete Propagation in Numerically Simulated Nocturnal Squall Lines, Mon. Weather Rev., 134, 3735–3752, https://doi.org/10.1175/MWR3268.1, 2006. a, b
Gaffin, D. M., Parker, S. S., and Kirkwood, P. D.: An Unexpectedly Heavy and Complex Snowfall Event across the Southern Appalachian Region, Weather Forecast., 18, 224–235, https://doi.org/10.1175/1520-0434(2003)018<0224:AUHACS>2.0.CO;2, 2003. a, b
Download
Short summary
Apparent waves in the atmosphere and similar features in storm winds can be detected by taking the difference between successive Doppler weather radar scans measuring radar-relative storm air motions. Applying image filtering to the difference data better isolates the detected signal. This technique is a useful tool in weather research and forecasting since such waves can trigger or enhance precipitation.
Share