Articles | Volume 15, issue 12
https://doi.org/10.5194/amt-15-3761-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-3761-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cloud phase and macrophysical properties over the Southern Ocean during the MARCUS field campaign
Department of Hydrology and Atmospheric Sciences, University of
Arizona, Tucson, AZ, USA
Xiquan Dong
Department of Hydrology and Atmospheric Sciences, University of
Arizona, Tucson, AZ, USA
Xiaojian Zheng
Department of Hydrology and Atmospheric Sciences, University of
Arizona, Tucson, AZ, USA
Pacific Northwest National Laboratory, Richland, WA, USA
Related authors
Anik Das, Baike Xi, Xiaojian Zheng, and Xiquan Dong
EGUsphere, https://doi.org/10.5194/egusphere-2025-874, https://doi.org/10.5194/egusphere-2025-874, 2025
Short summary
Short summary
This study presents a method to identify cloud boundaries and phases for marine boundary layer clouds over the Southern Ocean using airborne cloud radar and in situ probe data collected during the SOCRATES campaign. Single-layer low-level clouds (<3 km) were found to be dominating (85 %) across all observed samples. Phase classification showed 48.8 % liquid, 23.3 % mixed, and 6.9 % ice. Results support cloud process understanding and improve satellite and climate model studies.
Xiaojian Zheng, Xiquan Dong, Baike Xi, Timothy Logan, and Yuan Wang
Atmos. Chem. Phys., 24, 10323–10347, https://doi.org/10.5194/acp-24-10323-2024, https://doi.org/10.5194/acp-24-10323-2024, 2024
Short summary
Short summary
The marine boundary layer aerosol–cloud interactions (ACIs) are examined using in situ measurements from two aircraft campaigns over the eastern North Atlantic (ACE-ENA) and Southern Ocean (SOCRATES). The SOCRATES clouds have more and smaller cloud droplets. The ACE-ENA clouds exhibit stronger drizzle formation and growth. Results found distinctive aerosol–cloud interactions for two campaigns. The drizzle processes significantly alter sub-cloud aerosol budgets and impact the ACI assessments.
Anik Das, Baike Xi, Xiaojian Zheng, and Xiquan Dong
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-124, https://doi.org/10.5194/amt-2024-124, 2024
Revised manuscript not accepted
Short summary
Short summary
Understanding the cloud phase and macrophysical properties of Southern Ocean clouds is crucial to enhancing our understanding of the region. The cloud radar and in-situ probes during the SOCRATES aircraft campaign are used to develop a new method to determine cloud boundaries and dominant phase. Low clouds (<3km) are found to be the most dominant cloud type (~90%), with liquid being the most dominant phase type, followed by ice and mixed with a greater incidence of drizzle around the cloud base.
Yuan Wang, Xiaojian Zheng, Xiquan Dong, Baike Xi, and Yuk L. Yung
Atmos. Chem. Phys., 23, 8591–8605, https://doi.org/10.5194/acp-23-8591-2023, https://doi.org/10.5194/acp-23-8591-2023, 2023
Short summary
Short summary
Marine boundary layer clouds remain poorly predicted in global climate models due to multiple entangled uncertainty sources. This study uses the in situ observations from a recent field campaign to constrain and evaluate cloud physics in a simplified version of a climate model. Progress and remaining issues in the cloud physics parameterizations are identified. We systematically evaluate the impacts of large-scale forcing, microphysical scheme, and aerosol concentrations on the cloud property.
Xiaojian Zheng, Baike Xi, Xiquan Dong, Peng Wu, Timothy Logan, and Yuan Wang
Atmos. Chem. Phys., 22, 335–354, https://doi.org/10.5194/acp-22-335-2022, https://doi.org/10.5194/acp-22-335-2022, 2022
Short summary
Short summary
This study uses ground-based observations to investigate the physical processes in the aerosol–cloud interactions in non-precipitating marine boundary layer clouds, over the eastern North Atlantic Ocean. Results show that the cloud responses to the aerosols are diminished with limited water vapor supply, while they are enhanced with increasing water vapor availability. The clouds are found to be most sensitive to the aerosols under sufficient water vapor and strong boundary layer turbulence.
Yuan Wang, Xiaojian Zheng, Xiquan Dong, Baike Xi, Peng Wu, Timothy Logan, and Yuk L. Yung
Atmos. Chem. Phys., 20, 14741–14755, https://doi.org/10.5194/acp-20-14741-2020, https://doi.org/10.5194/acp-20-14741-2020, 2020
Short summary
Short summary
A recent aircraft field campaign near the Azores in the summer of 2017 provides ample observations of aerosols and clouds with detailed vertical information. This study utilizes those observational data in combination with the aerosol-aware large-eddy simulations and aerosol reanalysis data to examine the significance of the long-range-transported aerosol effect on marine-boundary-layer clouds. It is the first time that the ACE-ENA aircraft campaign data are used for this topic.
Dale M. Ward, Xiquan Dong, Baike Xi, Peng Wu, Xiaojian Zheng, and Yuan Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-817, https://doi.org/10.5194/acp-2020-817, 2020
Preprint withdrawn
Short summary
Short summary
Marine boundary layer clouds in subtropical regions strongly impact global energy balance, but complete understanding of the processes that control their development remain elusive. We analyze aircraft in-situ measurements of clouds collected in a field campaign for cases that contain organized structures tens of kilometres in extent embedded within a larger overcast cloud field. Failure to account for these structures can lead to misrepresentation in models and satellite retrievals.
Shaoyue Qiu, Xue Zheng, Peng Wu, Hsiang-He Lee, and Xiaoli Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2025-3465, https://doi.org/10.5194/egusphere-2025-3465, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Model liquid water path (LWP) responses match satellite observations, showing decreased (increased) LWP for non-precipitating thin (precipitating) clouds, due to realistic simulations of non-precipitating and drizzling regimes. However, LWP increases for non-precipitating thick clouds, opposite to satellite-based decreases, due to excessive precipitation, moist bias in cloud-top humidity, and cloud droplet number–LWP relations from internal cloud processes, rather than aerosol-cloud interaction.
Anik Das, Baike Xi, Xiaojian Zheng, and Xiquan Dong
EGUsphere, https://doi.org/10.5194/egusphere-2025-874, https://doi.org/10.5194/egusphere-2025-874, 2025
Short summary
Short summary
This study presents a method to identify cloud boundaries and phases for marine boundary layer clouds over the Southern Ocean using airborne cloud radar and in situ probe data collected during the SOCRATES campaign. Single-layer low-level clouds (<3 km) were found to be dominating (85 %) across all observed samples. Phase classification showed 48.8 % liquid, 23.3 % mixed, and 6.9 % ice. Results support cloud process understanding and improve satellite and climate model studies.
Xiaojian Zheng, Xiquan Dong, Baike Xi, Timothy Logan, and Yuan Wang
Atmos. Chem. Phys., 24, 10323–10347, https://doi.org/10.5194/acp-24-10323-2024, https://doi.org/10.5194/acp-24-10323-2024, 2024
Short summary
Short summary
The marine boundary layer aerosol–cloud interactions (ACIs) are examined using in situ measurements from two aircraft campaigns over the eastern North Atlantic (ACE-ENA) and Southern Ocean (SOCRATES). The SOCRATES clouds have more and smaller cloud droplets. The ACE-ENA clouds exhibit stronger drizzle formation and growth. Results found distinctive aerosol–cloud interactions for two campaigns. The drizzle processes significantly alter sub-cloud aerosol budgets and impact the ACI assessments.
Anik Das, Baike Xi, Xiaojian Zheng, and Xiquan Dong
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-124, https://doi.org/10.5194/amt-2024-124, 2024
Revised manuscript not accepted
Short summary
Short summary
Understanding the cloud phase and macrophysical properties of Southern Ocean clouds is crucial to enhancing our understanding of the region. The cloud radar and in-situ probes during the SOCRATES aircraft campaign are used to develop a new method to determine cloud boundaries and dominant phase. Low clouds (<3km) are found to be the most dominant cloud type (~90%), with liquid being the most dominant phase type, followed by ice and mixed with a greater incidence of drizzle around the cloud base.
Matthew W. Christensen, Peng Wu, Adam C. Varble, Heng Xiao, and Jerome D. Fast
Atmos. Chem. Phys., 24, 6455–6476, https://doi.org/10.5194/acp-24-6455-2024, https://doi.org/10.5194/acp-24-6455-2024, 2024
Short summary
Short summary
Clouds are essential to keep Earth cooler by reflecting sunlight back to space. We show that an increase in aerosol concentration suppresses precipitation in clouds, causing them to accumulate water and expand in a polluted environment with stronger turbulence and radiative cooling. This process enhances their reflectance by 51 %. It is therefore prudent to account for cloud fraction changes in assessments of aerosol–cloud interactions to improve predictions of climate change.
Damao Zhang, Andrew M. Vogelmann, Fan Yang, Edward Luke, Pavlos Kollias, Zhien Wang, Peng Wu, William I. Gustafson Jr., Fan Mei, Susanne Glienke, Jason Tomlinson, and Neel Desai
Atmos. Meas. Tech., 16, 5827–5846, https://doi.org/10.5194/amt-16-5827-2023, https://doi.org/10.5194/amt-16-5827-2023, 2023
Short summary
Short summary
Cloud droplet number concentration can be retrieved from remote sensing measurements. Aircraft measurements are used to validate four ground-based retrievals of cloud droplet number concentration. We demonstrate that retrieved cloud droplet number concentrations align well with aircraft measurements for overcast clouds, but they may substantially differ for broken clouds. The ensemble of various retrievals can help quantify retrieval uncertainties and identify reliable retrieval scenarios.
Shuaiqi Tang, Adam C. Varble, Jerome D. Fast, Kai Zhang, Peng Wu, Xiquan Dong, Fan Mei, Mikhail Pekour, Joseph C. Hardin, and Po-Lun Ma
Geosci. Model Dev., 16, 6355–6376, https://doi.org/10.5194/gmd-16-6355-2023, https://doi.org/10.5194/gmd-16-6355-2023, 2023
Short summary
Short summary
To assess the ability of Earth system model (ESM) predictions, we developed a tool called ESMAC Diags to understand how aerosols, clouds, and aerosol–cloud interactions are represented in ESMs. This paper describes its version 2 functionality. We compared the model predictions with measurements taken by planes, ships, satellites, and ground instruments over four regions across the world. Results show that this new tool can help identify model problems and guide future development of ESMs.
Yuan Wang, Xiaojian Zheng, Xiquan Dong, Baike Xi, and Yuk L. Yung
Atmos. Chem. Phys., 23, 8591–8605, https://doi.org/10.5194/acp-23-8591-2023, https://doi.org/10.5194/acp-23-8591-2023, 2023
Short summary
Short summary
Marine boundary layer clouds remain poorly predicted in global climate models due to multiple entangled uncertainty sources. This study uses the in situ observations from a recent field campaign to constrain and evaluate cloud physics in a simplified version of a climate model. Progress and remaining issues in the cloud physics parameterizations are identified. We systematically evaluate the impacts of large-scale forcing, microphysical scheme, and aerosol concentrations on the cloud property.
Matthew W. Christensen, Po-Lun Ma, Peng Wu, Adam C. Varble, Johannes Mülmenstädt, and Jerome D. Fast
Atmos. Chem. Phys., 23, 2789–2812, https://doi.org/10.5194/acp-23-2789-2023, https://doi.org/10.5194/acp-23-2789-2023, 2023
Short summary
Short summary
An increase in aerosol concentration (tiny airborne particles) is shown to suppress rainfall and increase the abundance of droplets in clouds passing over Graciosa Island in the Azores. Cloud drops remain affected by aerosol for several days across thousands of kilometers in satellite data. Simulations from an Earth system model show good agreement, but differences in the amount of cloud water and its extent remain despite modifications to model parameters that control the warm-rain process.
Xiaojian Zheng, Baike Xi, Xiquan Dong, Peng Wu, Timothy Logan, and Yuan Wang
Atmos. Chem. Phys., 22, 335–354, https://doi.org/10.5194/acp-22-335-2022, https://doi.org/10.5194/acp-22-335-2022, 2022
Short summary
Short summary
This study uses ground-based observations to investigate the physical processes in the aerosol–cloud interactions in non-precipitating marine boundary layer clouds, over the eastern North Atlantic Ocean. Results show that the cloud responses to the aerosols are diminished with limited water vapor supply, while they are enhanced with increasing water vapor availability. The clouds are found to be most sensitive to the aerosols under sufficient water vapor and strong boundary layer turbulence.
Zhibo Zhang, Qianqian Song, David B. Mechem, Vincent E. Larson, Jian Wang, Yangang Liu, Mikael K. Witte, Xiquan Dong, and Peng Wu
Atmos. Chem. Phys., 21, 3103–3121, https://doi.org/10.5194/acp-21-3103-2021, https://doi.org/10.5194/acp-21-3103-2021, 2021
Short summary
Short summary
This study investigates the small-scale variations and covariations of cloud microphysical properties, namely, cloud liquid water content and cloud droplet number concentration, in marine boundary layer clouds based on in situ observation from the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) campaign. We discuss the dependence of cloud variations on vertical location in cloud and the implications for warm-rain simulations in the global climate models.
Yuan Wang, Xiaojian Zheng, Xiquan Dong, Baike Xi, Peng Wu, Timothy Logan, and Yuk L. Yung
Atmos. Chem. Phys., 20, 14741–14755, https://doi.org/10.5194/acp-20-14741-2020, https://doi.org/10.5194/acp-20-14741-2020, 2020
Short summary
Short summary
A recent aircraft field campaign near the Azores in the summer of 2017 provides ample observations of aerosols and clouds with detailed vertical information. This study utilizes those observational data in combination with the aerosol-aware large-eddy simulations and aerosol reanalysis data to examine the significance of the long-range-transported aerosol effect on marine-boundary-layer clouds. It is the first time that the ACE-ENA aircraft campaign data are used for this topic.
Dale M. Ward, Xiquan Dong, Baike Xi, Peng Wu, Xiaojian Zheng, and Yuan Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-817, https://doi.org/10.5194/acp-2020-817, 2020
Preprint withdrawn
Short summary
Short summary
Marine boundary layer clouds in subtropical regions strongly impact global energy balance, but complete understanding of the processes that control their development remain elusive. We analyze aircraft in-situ measurements of clouds collected in a field campaign for cases that contain organized structures tens of kilometres in extent embedded within a larger overcast cloud field. Failure to account for these structures can lead to misrepresentation in models and satellite retrievals.
Cited articles
DOE ARM: MARCUS data, ARM [data set], https://adc.arm.gov/discovery/, last access: 4 September 2019.
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness,
Science, 45, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989.
Bodas-Salcedo, A., Mulcahy, J. P., Andrews, T., Williams, K. D., Ringer, M.
A., Field, P. R., and Elsaesser, G. S.: Strong Dependence of Atmospheric
Feedbacks on Mixed-Phase Microphysics and Aerosol-Cloud Interactions in
HadGEM3, J. Adv. Model. Earth Sy., 11, 1735–1758, https://doi.org/10.1029/2019MS001688, 2019.
Bony, S., Stevens, B., Frierson, D. M. W., Jakob, C., Kageyama, M., Pincus,
R., Shepherd, T. G., Sherwood, S. C., Siebesma, A. P., Sobel, A. H.,
Watanabe, M., and Webb, M. J.: Clouds, circulation and climate sensitivity,
Nat. Geosci., 8, 261–268, https://doi.org/10.1038/ngeo2398, 2015.
Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A.,, Forster, P. M., Mann, G. W., Spracklen, D. V., Woodhouse, M. T., Regayre, L. A., and Pierce, J. R.: Large contribution of natural aerosols to uncertainty in indirect forcing, Nature, 503, 67–71, https://doi.org/10.1038/nature12674, 2013.
Chubb, T. H., Jensen, J. B., Siems, S. T., and Manton, M. J.: In situ
observations of supercooled liquid clouds over the Southern Ocean during the HIAPER Pole-to-Pole Observation campaigns, Geophys. Res. Lett., Geophys. Res. Lett., 40, 5280–5285, https://doi.org/10.1002/grl.50986, 2013.
Dong, X., Xi, B., Kennedy, A., Minnis, P., and Wood, R.: A 19-month record of marine aerosol-cloud-radiation properties derived from DOE ARM mobile
facility deployment at the Azores. Part I: Cloud fraction and single-layered MBL cloud properties, J. Climate, 27, 3665–3682, https://doi.org/10.1175/JCLI-D-13-00553.1, 2014.
Hu, Y., Rodier, S., Xu, K. M., Sun, W., Huang, J., Lin, B., Zhai, P., and
Josset, D.: Occurrence, liquid water content, and fraction of supercooled
water clouds from combined CALIOP/IIR/MODIS measurements, J. Geophys. Res., 115, D00H34, https://doi.org/10.1029/2009JD012384, 2010.
Intrieri, J. M., Fairall, C. W., Shupe, M. D., Persson, P. O. G., Andreas,
E. L., Guest, P. S., and Moritz, R. E.: An annual cycle of Arctic surface
cloud forcing at SHEBA, J. Geophys. Res., 107, 8039, https://doi.org/10.1029/2000jc000439, 2002.
Klein, S. A., Hall, A., Norris, J. R., and Pincus, R.: Low-Cloud Feedbacks
from Cloud-Controlling Factors: A Review, Surv. Geophys., 38, 1307–1329, https://doi.org/10.1007/s10712-017-9433-3, 2017.
Kalesse, H., de Boer, G., Solomon, A., Oue, M., Ahlgrimm, M., Zhang, D.,
Shupe, M. D., Luke, E., and Protat, A.: Understanding rapid changes in phase partitioning between cloud liquid and ice in stratiform mixed-phase clouds: An arctic case study, Mon. Weather Rev., 144, 4805–4826 https://doi.org/10.1175/MWR-D-16-0155.1, 2016.
Lang, F., Huang, Y., Siems, S. T., and Manton, M. J.: Characteristics of the Marine Atmospheric Boundary Layer Over the Southern Ocean in Response to the Synoptic Forcing, J. Geophys. Res.-Atmos., 123, 7799–7820, https://doi.org/10.1029/2018JD028700, 2018.
Listowski, C., Delanoë, J., Kirchgaessner, A., Lachlan-Cope, T., and King, J.: Antarctic clouds, supercooled liquid water and mixed phase, investigated with DARDAR: geographical and seasonal variations, Atmos. Chem. Phys., 19, 6771–6808, https://doi.org/10.5194/acp-19-6771-2019, 2019.
Mace, G. G. and Protat, A.: Clouds over the Southern Ocean as observed
from the R/V Investigator during CAPRICORN. Part I: Cloud occurrence and phase partitioning, J. Appl. Meteorol. Clim., 57, 1783–1803, https://doi.org/10.1175/JAMC-D-17-0194.1, 2018.
Mace, G. G., Zhang, Q., Vaughan, M., Marchand, R., Stephens, G., Trepte, C., and Winker, D.: A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data, J. Geophys. Res., 114, D00A26, https://doi.org/10.1029/2007JD009755, 2009.
Mace, G. G., Protat, A., Humphries, R. S., Alexander, S. P., McRobert, I.
M., Ward, J., Selleck, P., Keywood, M., and McFarquhar, G. M.: Southern Ocean Cloud Properties Derived From CAPRICORN and MARCUS Data, J. Geophys. Res.-Atmos., 126, e2020JD033368, https://doi.org/10.1029/2020JD033368, 2021.
Marchand, R., Ackerman, T., Westwater, E. R., Clough, S. A., Cady-Pereira,
K., and Liljegren, J. C.: An assessment of microwave absorption models and
retrievals of cloud liquid water using clear-sky data, J. Geophys. Res., 108, 4773, https://doi.org/10.1029/2003jd003843, 2003.
Marchand, R., Wood, R., Bretherton, C., McFarquhar, G., Protat, A., Quinn,
P., Siems, S., Jakob, C., Alexander, S., and Weller, B.: The Southern Ocean
Clouds, Radiation Aerosol Transport Experimental Study (SOCRATES),
whitepaper available from http://www.atmos.washington.edu/socrates/SOCRATES_white_paper_Final_Sep29_2014.pdf, 2014.
McCoy, D. T., Hartmann, D. L., and Grosvenor, D. P.: Observed Southern Ocean cloud properties and shortwave reflection. Part II: Phase changes and low cloud feedback, J. Climate, 27, 8858–8868, https://doi.org/10.1175/JCLI-D-14-00288.1, 2014.
McCoy, D. T., Burrows, S. M., Wood, R., Grosvenor, D. P., Elliott, S. M., Ma, P.-L., Rasch, P. J., and Hartmann, D. L.: Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo, Sci. Adv., 1, e1500157, https://doi.org/10.1126/sciadv.1500157, 2015.
McFarquhar, G., Bretherton, C., Alexander, S., DeMott, P., Marchand, R.,
Protat, A., Quinn, P., Siems, S., Weller, R., and Wood, R.: Measurements of
Aerosols, Radiation, and Clouds over Sothern Ocean (MARCUS) Science Plan,
DOE ARM Climate Research Facility, DOE/SC-ARM-16-011,
http://arm.gov/publications/programdocs/doe-sc-arm-16-011.pdf (last access: 15 June 2022), 2016.
McFarquhar, G. M., Bretherton, C. S., Marchand, R., Protat, A., DeMott, P.
J., Alexander, S. P., Roberts, G. C., Twohy, C. H., Toohey, D., Siems, S.,
Huang, Y., Wood, R., Rauber, R. M., Lasher-Trapp, S., Jensen, J., Stith, J.
L., Mace, J., Um, J., Järvinen, E., Schnaiter, M., Gettelman, A.,
Sanchez, K. J., McCluskey, C. S., Russell, L. M., McCoy, I. L., Atlas, R.
L., Bardeen, C. G., Moore, K. A., Hill, T. C. J., Humphries, R. S., Keywood, M. D., Ristovski, Z., Cravigan, L., Schofield, R., Fairall, C., Mallet, M. D., Kreidenweis, S. M., Rainwater, B., D'Alessandro, J., Wang, Y., Wu, W., Saliba, G., Levin, E. J. T., Ding, S., Lang, F., Truong, S. C. H., Wolff, C., Haggerty, J., Harvey, M. J., Klekociuk, A. R., and McDonald, A.: Observations of Clouds, Aerosols, Precipitation, and Surface Radiation over the Southern Ocean: An Overview of CAPRICORN, MARCUS, MICRE, and SOCRATES, B. Am. Meteorol. Soc., 102, E894–E928, https://doi.org/10.1175/BAMS-D-20-0132.1, 2021.
Mohrmann, J., Finlon, J., Atlas, R., Lu, J., Hsiao, I., and Wood, R.: University of Washington Ice-Liquid Discriminator single particle phase classifications and 1 Hz particle size distributions/heterogeneity estimate, Version 1.0, UCAR/NCAR - Earth Observing Laboratory [data set], https://doi.org/10.26023/PA5W-4DRX-W50A, 2021.
Morrison, H., De Boer, G., Feingold, G., Harrington, J., Shupe, M. D., and
Sulia, K.: Resilience of persistent Arctic mixed-phase clouds, Nat. Geosci., 5, 11–17, https://doi.org/10.1038/ngeo1332, 2012.
Muradyan, P. and Coulter, R.: Micropulse Lidar (MPL) Instrument Handbook.
DOE ARM Climate Research Facility, DOE/SC-ARM-TR-019, https://www.arm.gov/publications/tech_reports/handbooks/mpl_handbook.pdf (last access: 25 March 2022), 2020.
Qiu, S., Dong, X., Xi, B., and Li, J. L. F.: Characterizing Arctic
mixed-phase cloud structure and its relationship with humidity and
temperature inversion using ARM NSA observations, J. Geophys. Res.-Atmos., 120, 7737–7746, https://doi.org/10.1002/2014JD023022, 2015.
Rémillard, J., Kollias, P., Luke, E., and Wood, R.: Marine Boundary
Layer Cloud Observations in the Azores, J. Climate, 25, 7381–7398, https://doi.org/10.1175/JCLI-D-11-00610.1, 2012.
Sassen, K.: The polarization lidar technique for cloud research: a review
and current assessment, Bull. Am. Meteorol. Soc., 72, 1848–1866, https://doi.org/10.1175/1520-0477(1991)072<1848:TPLTFC>2.0.CO;2, 1991.
Shupe, M. D.: A ground-based multisensory cloud phase classifier, Geophys. Res. Lett., 34, L22809, https://doi.org/10.1029/2007GL031008, 2007.
Shupe, M. D., Uttal, T., and Matrosov, S. Y.: Arctic cloud microphysics
retrievals from surface-based remote sensors at SHEBA, J. Appl. Meteorol., 44, 1544–1562, https://doi.org/10.1175/JAM2297.1, 2005.
Stanfield, R. E., Dong, X., Xi, B., Kennedy, A., Del Genio, A. D., Minnis,
P., and Jiang, J. H.: Assessment of NASA GISS CMIP5 and Post-CMIP5 Simulated
Clouds and TOA Radiation Budgets Using Satellite Observations. Part I: Cloud Fraction and Properties, J. Climate, 27, 4189–4208, https://doi.org/10.1175/jcli-d-13-00558.1, 2014.
Stanfield, R. E., Dong, X., Xi, B., Del Genio, A. D., Minnis, P., Doelling,
D., and Loeb, N.: Assessment of NASA GISS CMIP5 and post-CMIP5 simulated
clouds and TOA radiation budgets using satellite observations. Part II: TOA
radiation budget and CREs, J. Climate, 28, 1842–1864, https://doi.org/10.1175/JCLI-D-14-00249.1, 2015.
Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M. M. B., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.: Climate
change 2013 the physical science basis: Working Group I contribution to the
fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, ISBN 978-1-107-66182-0, 2013.
Toto, T. and Jensen, M.: Interpolated Sounding and Gridded Sounding
Value-Added Products. DOE ARM Climate Research Facility, DOE/SC-ARM-TR-183, https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-183.pdf (last access: 25 March 2022), 2016.
Uin, J.: Cloud Condensation Nuclei Particle Counter Instrument Handbook, DOE ARM Climate Research Facility, DOE/SC-ARM-TR-168,
https://www.arm.gov/publications/tech_reports/handbooks/ccn_handbook.pdf (last access: 25 March 2022), 2016.
Wu, P., Dong, X., and Xi, B.: Marine boundary layer drizzle properties and their impact on cloud property retrieval, Atmos. Meas. Tech., 8, 3555–3562, https://doi.org/10.5194/amt-8-3555-2015, 2015.
Wu, P., Dong, X., Xi, B., Liu, Y., Thieman, M., and Minnis, P.: Effects of
environment forcing on marine boundary layer cloud-drizzle processes, J.
Geophys. Res.-Atmos., 122, 4463–4478, https://doi.org/10.1002/2016JD026326, 2017.
Wu, P., Dong, X., and Xi, B.: A climatology of marine boundary layer cloud
and drizzle properties derived from ground-based observations over the
azores, J. Climate, 33, 10133–10148, https://doi.org/10.1175/JCLI-D-20-0272.1, 2020.
Xi, B., Dong, X., Minnis, P., and Khaiyer, M. M.: A 10 year climatology of
cloud fraction and vertical distribution derived from both surface and GOES
observations over the DOE ARM SPG site, J. Geophys. Res., 115, D12124,
https://doi.org/10.1029/2009JD012800, 2010.
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Ceppi, P., Klein, S. A., and Taylor, K. E.: Causes of Higher Climate
Sensitivity in CMIP6 Models, Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782, 2020.
Zhao, L., Zhao, C., Wang, Y., Wang, Y., and Yang, Y.: Evaluation of Cloud
Microphysical Properties Derived From MODIS and Himawari-8 Using In Situ
Aircraft Measurements Over the Southern Ocean, Earth and Space Science, 7, e2020EA001137, https://doi.org/10.1029/2020EA001137, 2020.
Short summary
This study develops an innovative method to determine the cloud phases over the Southern Ocean (SO) using the combination of radar and lidar measurements during the ship-based field campaign of MARCUS. Results from our study show that the low-level, deep, and shallow cumuli are dominant, and the mixed-phase clouds occur more than single phases over the SO. The mixed-phase cloud properties are similar to liquid-phase (ice-phase) clouds in the midlatitudes (polar) region of the SO.
This study develops an innovative method to determine the cloud phases over the Southern Ocean...