Articles | Volume 15, issue 12
https://doi.org/10.5194/amt-15-3761-2022
https://doi.org/10.5194/amt-15-3761-2022
Research article
 | 
23 Jun 2022
Research article |  | 23 Jun 2022

Cloud phase and macrophysical properties over the Southern Ocean during the MARCUS field campaign

Baike Xi, Xiquan Dong, Xiaojian Zheng, and Peng Wu

Related authors

Identifying MBL cloud boundaries and phase over the Southern Ocean using airborne radar and in-situ measurements during the SOCRATES campaign
Anik Das, Baike Xi, Xiaojian Zheng, and Xiquan Dong
EGUsphere, https://doi.org/10.5194/egusphere-2025-874,https://doi.org/10.5194/egusphere-2025-874, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Distinctive aerosol–cloud–precipitation interactions in marine boundary layer clouds from the ACE-ENA and SOCRATES aircraft field campaigns
Xiaojian Zheng, Xiquan Dong, Baike Xi, Timothy Logan, and Yuan Wang
Atmos. Chem. Phys., 24, 10323–10347, https://doi.org/10.5194/acp-24-10323-2024,https://doi.org/10.5194/acp-24-10323-2024, 2024
Short summary
Cloud phase estimation and macrophysical properties of low-level clouds using in-situ and radar measurements over the Southern Ocean during the SOCRATES campaign
Anik Das, Baike Xi, Xiaojian Zheng, and Xiquan Dong
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-124,https://doi.org/10.5194/amt-2024-124, 2024
Revised manuscript not accepted
Short summary
Insights of warm-cloud biases in Community Atmospheric Model 5 and 6 from the single-column modeling framework and Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) observations
Yuan Wang, Xiaojian Zheng, Xiquan Dong, Baike Xi, and Yuk L. Yung
Atmos. Chem. Phys., 23, 8591–8605, https://doi.org/10.5194/acp-23-8591-2023,https://doi.org/10.5194/acp-23-8591-2023, 2023
Short summary
Environmental effects on aerosol–cloud interaction in non-precipitating marine boundary layer (MBL) clouds over the eastern North Atlantic
Xiaojian Zheng, Baike Xi, Xiquan Dong, Peng Wu, Timothy Logan, and Yuan Wang
Atmos. Chem. Phys., 22, 335–354, https://doi.org/10.5194/acp-22-335-2022,https://doi.org/10.5194/acp-22-335-2022, 2022
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Infrared radiometric image classification and segmentation of cloud structures using a deep-learning framework from ground-based infrared thermal camera observations
Kélian Sommer, Wassim Kabalan, and Romain Brunet
Atmos. Meas. Tech., 18, 2083–2101, https://doi.org/10.5194/amt-18-2083-2025,https://doi.org/10.5194/amt-18-2083-2025, 2025
Short summary
Algorithm for continual monitoring of fog based on geostationary satellite imagery
Babak Jahani, Steffen Karalus, Julia Fuchs, Tobias Zech, Marina Zara, and Jan Cermak
Atmos. Meas. Tech., 18, 1927–1941, https://doi.org/10.5194/amt-18-1927-2025,https://doi.org/10.5194/amt-18-1927-2025, 2025
Short summary
Mitigation of satellite OCO-2 CO2 biases in the vicinity of clouds with 3D calculations using the Education and Research 3D Radiative Transfer Toolbox (EaR3T)
Yu-Wen Chen, K. Sebastian Schmidt, Hong Chen, Steven T. Massie, Susan S. Kulawik, and Hironobu Iwabuchi
Atmos. Meas. Tech., 18, 1859–1884, https://doi.org/10.5194/amt-18-1859-2025,https://doi.org/10.5194/amt-18-1859-2025, 2025
Short summary
Wet-radome attenuation in ARM cloud radars and its utilization in radar calibration using disdrometer measurements
Min Deng, Scott E. Giangrande, Michael P. Jensen, Karen Johnson, Christopher R. Williams, Jennifer M. Comstock, Ya-Chien Feng, Alyssa Matthews, Iosif A. Lindenmaier, Timothy G. Wendler, Marquette Rocque, Aifang Zhou, Zeen Zhu, Edward Luke, and Die Wang
Atmos. Meas. Tech., 18, 1641–1657, https://doi.org/10.5194/amt-18-1641-2025,https://doi.org/10.5194/amt-18-1641-2025, 2025
Short summary
Tomographic reconstruction algorithms for retrieving two-dimensional ice cloud microphysical parameters using along-track (sub)millimeter-wave radiometer observations
Yuli Liu and Ian Stuart Adams
Atmos. Meas. Tech., 18, 1659–1674, https://doi.org/10.5194/amt-18-1659-2025,https://doi.org/10.5194/amt-18-1659-2025, 2025
Short summary

Cited articles

DOE ARM: MARCUS data, ARM [data set], https://adc.arm.gov/discovery/, last access: 4 September 2019. 
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 45, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. 
Bodas-Salcedo, A., Mulcahy, J. P., Andrews, T., Williams, K. D., Ringer, M. A., Field, P. R., and Elsaesser, G. S.: Strong Dependence of Atmospheric Feedbacks on Mixed-Phase Microphysics and Aerosol-Cloud Interactions in HadGEM3, J. Adv. Model. Earth Sy., 11, 1735–1758, https://doi.org/10.1029/2019MS001688, 2019. 
Bony, S., Stevens, B., Frierson, D. M. W., Jakob, C., Kageyama, M., Pincus, R., Shepherd, T. G., Sherwood, S. C., Siebesma, A. P., Sobel, A. H., Watanabe, M., and Webb, M. J.: Clouds, circulation and climate sensitivity, Nat. Geosci., 8, 261–268, https://doi.org/10.1038/ngeo2398, 2015. 
Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A.,, Forster, P. M., Mann, G. W., Spracklen, D. V., Woodhouse, M. T., Regayre, L. A., and Pierce, J. R.: Large contribution of natural aerosols to uncertainty in indirect forcing, Nature, 503, 67–71, https://doi.org/10.1038/nature12674, 2013. 
Download
Short summary
This study develops an innovative method to determine the cloud phases over the Southern Ocean (SO) using the combination of radar and lidar measurements during the ship-based field campaign of MARCUS. Results from our study show that the low-level, deep, and shallow cumuli are dominant, and the mixed-phase clouds occur more than single phases over the SO. The mixed-phase cloud properties are similar to liquid-phase (ice-phase) clouds in the midlatitudes (polar) region of the SO.
Share