Articles | Volume 15, issue 18
https://doi.org/10.5194/amt-15-5515-2022
https://doi.org/10.5194/amt-15-5515-2022
Research article
 | 
28 Sep 2022
Research article |  | 28 Sep 2022

Image muting of mixed precipitation to improve identification of regions of heavy snow in radar data

Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, and Luke R. Allen

Related authors

Synthesis of surface snowfall rates and radar-observed storm structures in 10+ years of northeastern US winter storms
Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, Mariko Oue, and Charles N. Helms
Atmos. Chem. Phys., 25, 9999–10026, https://doi.org/10.5194/acp-25-9999-2025,https://doi.org/10.5194/acp-25-9999-2025, 2025
Short summary
Hunting for gravity waves in non-orographic winter storms using 3+ years of regional surface air pressure network and radar observations
Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins
Atmos. Chem. Phys., 25, 1765–1790, https://doi.org/10.5194/acp-25-1765-2025,https://doi.org/10.5194/acp-25-1765-2025, 2025
Short summary
Dual adaptive differential threshold method for automated detection of faint and strong echo features in radar observations of winter storms
Laura M. Tomkins, Sandra E. Yuter, and Matthew A. Miller
Atmos. Meas. Tech., 17, 3377–3399, https://doi.org/10.5194/amt-17-3377-2024,https://doi.org/10.5194/amt-17-3377-2024, 2024
Short summary
Objective identification of pressure wave events from networks of 1 Hz, high-precision sensors
Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins
Atmos. Meas. Tech., 17, 113–134, https://doi.org/10.5194/amt-17-113-2024,https://doi.org/10.5194/amt-17-113-2024, 2024
Short summary
Detecting wave features in Doppler radial velocity radar observations
Matthew A. Miller, Sandra E. Yuter, Nicole P. Hoban, Laura M. Tomkins, and Brian A. Colle
Atmos. Meas. Tech., 15, 1689–1702, https://doi.org/10.5194/amt-15-1689-2022,https://doi.org/10.5194/amt-15-1689-2022, 2022
Short summary

Cited articles

Alku, L., Moisseev, D., Aittomäki, T., and Chandrasekar, V.: Identification and Suppression of Nonmeteorological Echoes Using Spectral Polarimetric Processing, IEEE T. Geosci. Remote, 53, 3628–3638, https://doi.org/10.1109/TGRS.2014.2380476, 2015. a
Ansari, S., Del Greco, S., Kearns, E., Brown, O., Wilkins, S., Ramamurthy, M., Weber, J., May, R., Sundwall, J., Layton, J., Gold, A., Pasch, A., and Lakshmanan, V.: Unlocking the Potential of NEXRAD Data through NOAA's Big Data Partnership, B. Am. Meteorol. Soc., 99, 189–204, https://doi.org/10.1175/BAMS-D-16-0021.1, 2018. a
Battan, L. J.: Radar observation of the atmosphere, University of Chicago Press, Chicago, ISBN-10: 1878907271, ISBN-13: 978-1878907271, 1973. a
Bringi, V. and Chandrasekar, V.: Polarimetric Doppler Weather Radar: Principles and Applications, Cambridge University Press, ISBN-13: 978-0521623841, ISBN-10: 0521623847, 2001. a, b
Calvo, L., Christel, I., Terrado, M., Cucchietti, F., and Pérez-Montoro, M.: Users' Cognitive Load: A Key Aspect to Successfully Communicate Visual Climate Information, B. Am. Meteorol. Soc., 103, E1–E16, 2021. a
Download
Short summary
Locally higher radar reflectivity values in winter storms can mean more snowfall or a transition from snow to mixtures of snow, partially melted snow, and/or rain. We use the correlation coefficient to de-emphasize regions of mixed precipitation. Visual muting is valuable for analyzing and monitoring evolving weather conditions during winter storm events.
Share