Articles | Volume 15, issue 18
https://doi.org/10.5194/amt-15-5515-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-5515-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Image muting of mixed precipitation to improve identification of regions of heavy snow in radar data
Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, 27695, USA
Sandra E. Yuter
Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, 27695, USA
Department of Marine, Earth and Atmospheric Science, North Carolina State University, Raleigh, NC, 27695, USA
Matthew A. Miller
Department of Marine, Earth and Atmospheric Science, North Carolina State University, Raleigh, NC, 27695, USA
Luke R. Allen
Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, 27695, USA
Related authors
Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, Mariko Oue, and Charles N. Helms
Atmos. Chem. Phys., 25, 9999–10026, https://doi.org/10.5194/acp-25-9999-2025, https://doi.org/10.5194/acp-25-9999-2025, 2025
Short summary
Short summary
This study investigates how radar-detected snow bands relate to snowfall rates during winter storms in the northeastern United States. Using over a decade of data, we found that snow bands are not consistently linked to heavy snowfall at the surface, as snow particles are often dispersed by wind before reaching the ground. These findings highlight limitations of using radar reflectivity for predicting snow rates and suggest focusing on radar echo duration to better understand snowfall patterns.
Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins
Atmos. Chem. Phys., 25, 1765–1790, https://doi.org/10.5194/acp-25-1765-2025, https://doi.org/10.5194/acp-25-1765-2025, 2025
Short summary
Short summary
Atmospheric gravity waves (GWs) are air oscillations in which buoyancy is the restoring force, and they may enhance precipitation under certain conditions. We used 3+ seasons of pressure data to identify GWs with wavelengths ≤ 170 km in the Toronto and New York metropolitan areas in the context of snow storms. We found only six GW events during snow storms, suggesting that GWs on those scales are uncommon at the two locations during snow storms and, thus, do not often enhance snowfall.
Laura M. Tomkins, Sandra E. Yuter, and Matthew A. Miller
Atmos. Meas. Tech., 17, 3377–3399, https://doi.org/10.5194/amt-17-3377-2024, https://doi.org/10.5194/amt-17-3377-2024, 2024
Short summary
Short summary
We have created a new method to better identify enhanced features in radar data from winter storms. Unlike the clear-cut features seen in warm-season storms, features in winter storms are often fuzzier with softer edges. Our technique is unique because it uses two adaptive thresholds that change based on the background radar values. It can identify both strong and subtle features in the radar data and takes into account uncertainties in the detection process.
Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins
Atmos. Meas. Tech., 17, 113–134, https://doi.org/10.5194/amt-17-113-2024, https://doi.org/10.5194/amt-17-113-2024, 2024
Short summary
Short summary
We present a data set of high-precision surface air pressure observations and a method for detecting wave signals from the time series of pressure. A wavelet-based method is used to find wave signals at specific times and wave periods. From networks of pressure sensors spaced tens of kilometers apart, the wave phase speed and direction are estimated. Examples of wave events and their meteorological context are shown using radar data, weather balloon data, and other surface weather observations.
Matthew A. Miller, Sandra E. Yuter, Nicole P. Hoban, Laura M. Tomkins, and Brian A. Colle
Atmos. Meas. Tech., 15, 1689–1702, https://doi.org/10.5194/amt-15-1689-2022, https://doi.org/10.5194/amt-15-1689-2022, 2022
Short summary
Short summary
Apparent waves in the atmosphere and similar features in storm winds can be detected by taking the difference between successive Doppler weather radar scans measuring radar-relative storm air motions. Applying image filtering to the difference data better isolates the detected signal. This technique is a useful tool in weather research and forecasting since such waves can trigger or enhance precipitation.
Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, Mariko Oue, and Charles N. Helms
Atmos. Chem. Phys., 25, 9999–10026, https://doi.org/10.5194/acp-25-9999-2025, https://doi.org/10.5194/acp-25-9999-2025, 2025
Short summary
Short summary
This study investigates how radar-detected snow bands relate to snowfall rates during winter storms in the northeastern United States. Using over a decade of data, we found that snow bands are not consistently linked to heavy snowfall at the surface, as snow particles are often dispersed by wind before reaching the ground. These findings highlight limitations of using radar reflectivity for predicting snow rates and suggest focusing on radar echo duration to better understand snowfall patterns.
Luke R. Allen, Sandra E. Yuter, Declan M. Crowe, Matthew A. Miller, and K. Lee Thornhill
Atmos. Chem. Phys., 25, 6679–6701, https://doi.org/10.5194/acp-25-6679-2025, https://doi.org/10.5194/acp-25-6679-2025, 2025
Short summary
Short summary
We analyzed in-cloud characteristics using in situ measurements from 42 research flights across two field campaigns into non-orographic, non-lake-effect winter storms. Much of the storm volume contains weak vertical motions (a few centimeters per second), and most updrafts ≥ 0.5 m s-1 are small (< 1 km). Within 2 km of cloud radar echo top, stronger vertical motions and conditions for ice particle growth are more common. Overturning air motions near cloud top appear important for the production of snow particles.
Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins
Atmos. Chem. Phys., 25, 1765–1790, https://doi.org/10.5194/acp-25-1765-2025, https://doi.org/10.5194/acp-25-1765-2025, 2025
Short summary
Short summary
Atmospheric gravity waves (GWs) are air oscillations in which buoyancy is the restoring force, and they may enhance precipitation under certain conditions. We used 3+ seasons of pressure data to identify GWs with wavelengths ≤ 170 km in the Toronto and New York metropolitan areas in the context of snow storms. We found only six GW events during snow storms, suggesting that GWs on those scales are uncommon at the two locations during snow storms and, thus, do not often enhance snowfall.
Laura M. Tomkins, Sandra E. Yuter, and Matthew A. Miller
Atmos. Meas. Tech., 17, 3377–3399, https://doi.org/10.5194/amt-17-3377-2024, https://doi.org/10.5194/amt-17-3377-2024, 2024
Short summary
Short summary
We have created a new method to better identify enhanced features in radar data from winter storms. Unlike the clear-cut features seen in warm-season storms, features in winter storms are often fuzzier with softer edges. Our technique is unique because it uses two adaptive thresholds that change based on the background radar values. It can identify both strong and subtle features in the radar data and takes into account uncertainties in the detection process.
Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins
Atmos. Meas. Tech., 17, 113–134, https://doi.org/10.5194/amt-17-113-2024, https://doi.org/10.5194/amt-17-113-2024, 2024
Short summary
Short summary
We present a data set of high-precision surface air pressure observations and a method for detecting wave signals from the time series of pressure. A wavelet-based method is used to find wave signals at specific times and wave periods. From networks of pressure sensors spaced tens of kilometers apart, the wave phase speed and direction are estimated. Examples of wave events and their meteorological context are shown using radar data, weather balloon data, and other surface weather observations.
Matthew A. Miller, Sandra E. Yuter, Nicole P. Hoban, Laura M. Tomkins, and Brian A. Colle
Atmos. Meas. Tech., 15, 1689–1702, https://doi.org/10.5194/amt-15-1689-2022, https://doi.org/10.5194/amt-15-1689-2022, 2022
Short summary
Short summary
Apparent waves in the atmosphere and similar features in storm winds can be detected by taking the difference between successive Doppler weather radar scans measuring radar-relative storm air motions. Applying image filtering to the difference data better isolates the detected signal. This technique is a useful tool in weather research and forecasting since such waves can trigger or enhance precipitation.
Cited articles
Alku, L., Moisseev, D., Aittomäki, T., and Chandrasekar, V.: Identification and Suppression of Nonmeteorological Echoes Using Spectral Polarimetric Processing, IEEE T. Geosci. Remote, 53, 3628–3638, https://doi.org/10.1109/TGRS.2014.2380476, 2015. a
Ansari, S., Del Greco, S., Kearns, E., Brown, O., Wilkins, S., Ramamurthy, M., Weber, J., May, R., Sundwall, J., Layton, J., Gold, A., Pasch, A., and Lakshmanan, V.: Unlocking the Potential of NEXRAD Data through NOAA's Big Data Partnership, B. Am. Meteorol. Soc., 99, 189–204, https://doi.org/10.1175/BAMS-D-16-0021.1, 2018. a
Battan, L. J.: Radar observation of the atmosphere, University of Chicago Press, Chicago, ISBN-10: 1878907271, ISBN-13: 978-1878907271, 1973. a
Calvo, L., Christel, I., Terrado, M., Cucchietti, F., and Pérez-Montoro, M.: Users' Cognitive Load: A Key Aspect to Successfully Communicate Visual Climate Information, B. Am. Meteorol. Soc., 103, E1–E16, 2021. a
Cressman, G. P.: An Operational Objective Analysis System, Mon. Weather Rev., 87, 367–374, https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2, 1959. a
Ganetis, S. A., Colle, B. A., Yuter, S. E., and Hoban, N. P.: Environmental Conditions Associated with Observed Snowband Structures within Northeast U.S. Winter Storms, Mon. Weather Rev., 146, 3675–3690, https://doi.org/10.1175/MWR-D-18-0054.1, 2018. a
Giangrande, S. E., Krause, J. M., and Ryzhkov, A. V.: Automatic Designation of the Melting Layer with a Polarimetric Prototype of the WSR-88D Radar, J. Appl. Meteorol. Clim., 47, 1354–1364, https://doi.org/10.1175/2007JAMC1634.1, 2008. a, b, c
Griffin, E. M., Schuur, T. J., Ryzhkov, A. V., Reeves, H. D., and Picca, J. C.: A polarimetric and microphysical investigation of the Northeast blizzard of 8–9 February 2013, Weather Forecast., 29, 1271–1294, 2014. a
Griffin, E. M., Schuur, T. J., and Ryzhkov, A. V.: A polarimetric radar analysis of ice microphysical processes in melting layers of winter storms using S-band quasi-vertical profiles, J. Appl. Meteorol. Clim., 59, 751–767, 2020. a
Helmus, J. J. and Collis, S. M.: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language, Journal of Open Research Software, 4, e25, https://doi.org/10.5334/jors.119, 2016. a, b
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2018. a
Hersbach, H., Bell, B., Berrisford, P., et al.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Heymsfield, G. M., Bidwell, S. W., Caylor, I. J., Ameen, S., Nicholson, S., Boncyk, W., Miller, L., Vandemark, D., Racette, P. E., and Dod, L. R.: The EDOP radar system on the high-altitude NASA ER-2 aircraft, J. Atmos. Ocean. Tech., 13, 795–809, 1996. a
Kumjian, M. R.: Principles and Applications of Dual-Polarization Weather Radar. Part I: Description of the Polarimetric Radar Variables, Journal of Operational Meteorology, 1, 226–242, https://doi.org/10.15191/nwajom.2013.0119, 2013a. a
Kumjian, M. R.: Principles and Applications of Dual-Polarization Weather Radar. Part II: Warm- and Cold-Season Applications, Journal of Operational Meteorology, 1, 243–264, https://doi.org/10.15191/nwajom.2013.01, 2013b. a
Mayer, R. E. and Moreno, R.: Nine ways to reduce cognitive load in multimedia learning, Educ. Psychol., 38, 43–52, 2003. a
McMurdie, L. A., Heymsfield, G., Yorks, J. E., and Braun, S. A.: Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) Collection, NASA EOSDIS Global Hydrology Resource Center Distributed Active Archive Center [data set], Huntsville, Alabama, U.S.A., https://doi.org/10.5067/IMPACTS/DATA101, 2019 (data available at: http://ghrc.nsstc.nasa.gov/, last access: 13 July 2022). a
McMurdie, L. A., Heymsfield, G. M., Yorks, J. E., Braun, S. A., Skofronick-Jackson, G., Rauber, R. M., Yuter, S., Colle, B., McFarquhar, G. M., Poellot, M., Novak, D. R., Lang, T. J., Kroodsma, R., McLinden, M., Oue, M., Kollias, P., Kumjian, M. R., Greybush, S. J., Heymsfield, A. J., Finlon, J. A., McDonald, V. L., and Nicholls, S.: Chasing Snowstorms: The Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) Campaign, B. Am. Meteorol. Soc., 103, E1243–E1269, https://doi.org/10.1175/BAMS-D-20-0246.1, 2022. a
NOAA: WSR-88D Meteorological Observations, Federal Meteorological Handbook No. 11, Part C WSR-88D Products and Algorithms, Tech. Rep. FCM-H11C-2017, Office of the Federal Coordinator for Meteorological Services and Supporting Research, NOAA, Silver Spring, MD, https://www.icams-portal.gov/resources/ofcm/fmh/FMH11/fmh11partC.pdf (last access: 24 April 2022), 2017. a, b
NOAA National Centers for Environmental Information (NOAA NCEI): Automated Surface/Weather Observing Systems (ASOS/AWOS), NOAA NCEI, https://www.ncei.noaa.gov/products/land-based-station/automated-surface-weather-observing-systems, last access: 17 December 2021. a
NOAA National Weather Service (NWS) Radar Operations Center: NOAA Next Generation Radar (NEXRAD) Level 2 Base Data, NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5W9574V, 1991 (data available at: https://www.ncei.noaa.gov/products/radar/next-generation-weather-radar, last access: 17 December 2021). a
Novak, D. R., Colle, B. A., and Yuter, S. E.: High-Resolution Observations and Model Simulations of the Life Cycle of an Intense Mesoscale Snowband over the Northeastern United States, Mon. Weather Rev., 136, 1433–1456, https://doi.org/10.1175/2007MWR2233.1, 2008. a
Picca, J. C., Schultz, D. M., Colle, B. A., Ganetis, S., Novak, D. R., and Sienkiewicz, M. J.: The Value of Dual-Polarization Radar in Diagnosing the Complex Microphysical Evolution of an Intense Snowband, B. Am. Meteorol. Soc., 95, 1825–1834, https://doi.org/10.1175/BAMS-D-13-00258.1, 2014. a
Py-ART API Reference Manual: pyart.util.image_mute_radar: https://arm-doe.github.io/pyart/API/generated/pyart.util.image_mute_radar.html, last access: 15 March 2022. a
Py-ART Example Gallery: Create an image-muted reflectivity plot, https://arm-doe.github.io/pyart/examples/plotting/plot_nexrad_image_muted_reflectivity.html, last access 10 June 2022. a
Ryzhkov, A. V.: The Impact of Beam Broadening on the Quality of Radar Polarimetric Data, J. Atmos. Ocean. Tech., 24, 729–744, https://doi.org/10.1175/JTECH2003.1, 2007. a, b
Schultz, D. M., Bosart, L. F., Colle, B. A., Davies, H. C., Dearden, C., Keyser, D., Martius, O., Roebber, P. J., Steenburgh, W. J., Volkert, H., and Winters, A. C.: Extratropical Cyclones: A Century of Research on Meteorology's Centerpiece, Meteor. Mon., 59, 16.1–16.56, 2019. a
Suchow, J. W. and Alvarez, G. A.: Motion silences awareness of visual change, Curr. Biol., 21, 140–143, 2011. a
Tomkins, L.: Figures for Image Muting of Mixed Precipitation to Improve Identification of Regions of Heavy Snow in Radar Data, Copernicus Publications [video], https://av.tib.eu/series/1228, last access: 17 June 2022. a
Vivekanandan, J., Bringi, V., Hagen, M., and Meischner, P.: Polarimetric radar studies of atmospheric ice particles, IEEE T. Geosci. Remote, 32, 1–10, https://doi.org/10.1109/36.285183, 1994. a, b
Warren, R. A. and Protat, A.: Should Interpolation of Radar Reflectivity be Performed in Z or dBZ?, J. Atmos. Ocean. Tech., 36, 1143–1156, https://doi.org/10.1175/JTECH-D-18-0183.1, 2019. a
Zrnić, D. S., Melnikov, V. M., and Ryzhkov, A. V.: Correlation Coefficients between Horizontally and Vertically Polarized Returns from Ground Clutter, J. Atmos. Ocean. Tech., 23, 381–394, https://doi.org/10.1175/JTECH1856.1, 2006. a
Short summary
Locally higher radar reflectivity values in winter storms can mean more snowfall or a transition from snow to mixtures of snow, partially melted snow, and/or rain. We use the correlation coefficient to de-emphasize regions of mixed precipitation. Visual muting is valuable for analyzing and monitoring evolving weather conditions during winter storm events.
Locally higher radar reflectivity values in winter storms can mean more snowfall or a transition...