Articles | Volume 16, issue 7
https://doi.org/10.5194/amt-16-1971-2023
https://doi.org/10.5194/amt-16-1971-2023
Research article
 | 
14 Apr 2023
Research article |  | 14 Apr 2023

The Education and Research 3D Radiative Transfer Toolbox (EaR3T) – towards the mitigation of 3D bias in airborne and spaceborne passive imagery cloud retrievals

Hong Chen, K. Sebastian Schmidt, Steven T. Massie, Vikas Nataraja, Matthew S. Norgren, Jake J. Gristey, Graham Feingold, Robert E. Holz, and Hironobu Iwabuchi

Data sets

OCO-2 Level 1B calibrated, geolocated science spectra, Retrospective Processing V10r OCO-2 Science Team/M. Gunson, and A. Eldering https://doi.org/10.5067/6O3GEUK7U2JG

OCO-2 Level 2 meteorological parameters interpolated from global assimilation model for each sounding, Retrospective Processing V10r OCO-2 Science Team/M. Gunson, and A. Eldering https://doi.org/10.5067/OJZZW0LIGSDH

OCO-2 Level 2 geolocated XCO2 retrievals results, physical model, Retrospective Processing V10r OCO-2 Science Team/M. Gunson, and A. Eldering https://doi.org/10.5067/6SBROTA57TFH

MODIS Geolocation Fields Product MODIS Characterization Support Team https://doi.org/10.5067/MODIS/MYD03.061

MODIS 250m Calibrated Radiances Product MODIS Characterization Support Team https://doi.org/10.5067/MODIS/MYD02QKM.061

MODIS atmosphere L2 cloud product (06_L2) S. Platnick, S. A. Ackerman, M. D. King, K. Meyer, W. P. Menzel, R. E. Holz, B. A. Baum, and P. Yang https://doi.org/10.5067/MODIS/MYD06_L2.061

MODIS/Terra+Aqua BRDF/Albedo Daily L3 Global - 500m V061 C. Schaaf and Z. Wang https://doi.org/10.5067/MODIS/MCD43A3.061

Clouds, Aerosol and Monsoon Processes-Philippines Experiment J. S. Reid, P. Xian, S. P. Burton, A. L. Cook, E. C. Crosbie, M. A. Fenn, R. A. Ferrare, S. W. Freeman, J. W. Hair, D. B. Harper, C. A. Hostetler, C. E. Robinson, A. J. Scarino, M. A. Shook, G. A. Sokolowsky, S. C. van den Heever, E. L. Winstead, S. Woods, and L. D. Ziemba https://doi.org/10.5067/Suborbital/CAMP2EX2018/DATA001

Model code and software

hong-chen/er3t: er3t-v0.1.1 (v0.1.1) H. Chen, S. Schmidt, and V. Nataraja https://doi.org/10.5281/zenodo.7734965

Download
Short summary
We introduce the Education and Research 3D Radiative Transfer Toolbox (EaR3T) and propose a radiance self-consistency approach for quantifying and mitigating 3D bias in legacy airborne and spaceborne imagery retrievals due to spatially inhomogeneous clouds and surfaces.